Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes and Immunity
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes and Immunity
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections

Authors: Dauphinee, SM; Richer, E; Eva, MM; McIntosh, F; Paquet, M; Dangoor, D; Burkart, C; +5 Authors

Contribution of increased ISG15, ISGylation and deregulated type I IFN signaling in Usp18 mutant mice during the course of bacterial infections

Abstract

Host genetics has a key role in susceptibility to Salmonella Typhimurium infection. We previously used N-ethyl-N-nitrosourea (ENU) mutagenesis to identify a loss-of-function mutation within the gene ubiquitin-specific peptidase 18 (Usp18(Ity9)), which confers increased susceptibility to Salmonella Typhimurium. USP18 functions to regulate type I interferon (IFN) signaling and as a protease to remove ISG15 from substrate proteins. Usp18(Ity9) mice are susceptible to infection with Salmonella Typhimurium and have increased expression and function of ISG15, but Usp18(Ity9) mice lacking Isg15 do not show improved survival with Salmonella challenge. Type I IFN signaling is increased in Usp18(Ity9) mice and inhibition of type I IFN signaling is associated with improved survival in mutant mice. Hyperactivation of type I IFN signaling leads to increased IL-10, deregulated expression of autophagy markers and elevated interleukin (IL)-1β and IL-17. Furthermore, Usp18(Ity9) mice are more susceptible to infection with Mycobacterium tuberculosis, have increased bacterial load in the lung and spleen, elevated inflammatory cytokines and more severe lung pathology. These findings demonstrate that regulation of type I IFN signaling is the predominant mechanism affecting the susceptibility of Usp18(Ity9) mice to Salmonella infection and that hyperactivation of signaling leads to increased IL-10, deregulation of autophagic markers and increased proinflammatory cytokine production.

Keywords

Immunology, Interleukin-1beta, Inbred C57BL, Article, Mice, Genetics, Autophagy, 2.1 Biological and endogenous factors, Animals, Aetiology, Lung, Ubiquitins, Mycobacterium Infections, Interleukin-17, Foodborne Illness, Mice, Inbred C57BL, Emerging Infectious Diseases, Infectious Diseases, Good Health and Well Being, Interferon Type I, Mutation, Salmonella Infections, Cytokines, Digestive Diseases, Infection, Ubiquitin Thiolesterase, Spleen, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
bronze