Sustained Delivery Growth Factors with Polyethyleneimine‐Modified Nanoparticles Promote Embryonic Stem Cells Differentiation and Liver Regeneration
Sustained Delivery Growth Factors with Polyethyleneimine‐Modified Nanoparticles Promote Embryonic Stem Cells Differentiation and Liver Regeneration
Stem‐cell‐derived hepatocyte transplantation is considered as a potential method for the therapy of acute and chronic liver failure. However, the low efficiency of differentiation into mature and functional hepatocytes remains a major challenge for clinical applications. By using polyethyleneimine‐modified silica nanoparticles, this study develops a system for sustained delivery of growth factors, leading to induce hepatocyte‐like cells (iHeps) from mouse embryonic stem cells (mESCs) and improve the expression of endoderm and hepatocyte‐specific genes and proteins significantly, thus producing a higher population of functional hepatocytes in vitro. When transplanted into liver‐injured mice after four weeks, mESC‐derived definitive endoderm cells treated with this delivery system show higher integration efficiency into the host liver, differentiated into iHeps in vivo and significantly restored the injured liver. Therefore, these findings reveal the multiple advantages of functionalized nanoparticles to serve as efficient delivery platforms to promote stem cell differentiation in the regenerative medicine.
- Fudan University China (People's Republic of)
- Shanghai Jiao Tong University China (People's Republic of)
- Tongji University China (People's Republic of)
- Shanghai University of Engineering Sciences China (People's Republic of)
- China Medical University China (People's Republic of)
Full Papers
Full Papers
2 Research products, page 1 of 1
- 2008IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
