Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cancerarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway

Authors: Fan, Tianli; Chen, Jing; Zhang, Lirong; Gao, Pan; Hui, Yiran; Xu, Peirong; Zhang, Xiaqing; +1 Authors

Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway

Abstract

There is growing evidence that Bit1 exerts different roles in the development and progression of human cancers. Although Bit1 was highly exhibited in ESCC tissues in our previous study, its roles and molecular mechanisms implicated in development and progression of ESCC remain unknown.Bit1 protein expression in ESCC cell lines and normal esophageal epithelial cell was detected by Western blotting. Bit1 protein expression mediated by Bit1 shRNA was investigated by Western blotting. MTT, migration assay, invasion experiment, ELISA and Flow cytometry were utilized to determine the effects of Bit1 knockdown on cell proliferation, migration, invasion and apoptosis, respectively. A xenograft model was used to examine in vivo tumourigenicity, and immunohistochemistry and TUNEL were utilized to evaluate the related protein expression and apoptosis. Gene microarray was determined by Agilent SurePrint G3 Human GE 8 × 60 K Microarray, the interaction of Bit1 and FAK proteins were detected by Immunoprecipitation and the key protein expressions of FAK-paxillin pathway were detected by Western blotting.We found Bit1 expression in all human ESCC cell lines tested was significantly higher than that in normal esophageal epithelial cell Het-1A (P < 0.05), in which EC9706 presented the highest Bit1 level. Bit1 protein level was significantly downregulated at day 1 after transfection with specific shRNA against Bit1 (P < 0.05). At days 2 and 3, Bit1 level reached the lowest value after transfection with Bit1 shRNA. Moreover, Bit1 depletion contributed to growth inhibition in vitro and in vivo, reduced cell migration and invasion abilities, and induced cell apoptosis in EC9706 and TE1 cells. More importantly, Bit1 downregulation significantly lowered Bcl-2 and MMP-2 levels in EC9706 xenografted tumor tissues, meanwhile triggered apoptosis after treatment with different doses of Bit1 shRNA. Further gene microarray revealed that 23 genes in Bit1-RNAi group were markedly downregulated, whereas 16 genes were obviously upregulated. Notably, Bit1 intrinsically interacted with FAK protein in EC9706 cells. Moreover, paxillin was downregulated at mRNA and protein levels in Bit1 shRNA group, coupled with the decreases of FAK mRNA and protein expressions.Bit1 may be an important regulator in cell growth, apoptosis, migration and invasion of ESCC via targeting FAK-paxillin pathway, and thereby combinative manipulation of Bit1 and FAK-paxillin pathway may be the novel and promising therapeutic targets for the patients with ESCC.

Related Organizations
Keywords

Cancer Research, Esophageal Neoplasms, Carcinogenesis, Down-Regulation, Mice, Nude, Apoptosis, Mitochondrial Proteins, Cell Movement, Cell Line, Tumor, Animals, Humans, Neoplasm Invasiveness, Cell Proliferation, Oligonucleotide Array Sequence Analysis, Research, Oncology, Focal Adhesion Protein-Tyrosine Kinases, Gene Knockdown Techniques, Carcinoma, Squamous Cell, Molecular Medicine, Matrix Metalloproteinase 2, Esophageal Squamous Cell Carcinoma, Paxillin, Carboxylic Ester Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
gold