Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 1998
versions View all 4 versions

Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain

Authors: Roberto Dominguez; Kathleen M. Trybus; Carolyn Cohen; Yelena Freyzon;

Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain

Abstract

The crystal structures of an expressed vertebrate smooth muscle myosin motor domain (MD) and a motor domain-essential light chain (ELC) complex (MDE), both with a transition state analog (MgADP x AIF4-) in the active site, have been determined to 2.9 A and 3.5 A resolution, respectively. The MDE structure with an ATP analog (MgADP x BeFx) was also determined to 3.6 A resolution. In all three structures, a domain of the C-terminal region, the "converter," is rotated approximately 70 degrees from that in nucleotide-free skeletal subfragment 1 (S1). We have found that the MDE-BeFx and MDE-AIF4- structures are almost identical, consistent with the fact that they both bind weakly to actin. A comparison of the lever arm positions in MDE-AIF4- and in nucleotide-free skeletal S1 shows that a potential displacement of approximately 10 nm can be achieved during the power stroke.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Myosin Light Chains, Biochemistry, Genetics and Molecular Biology(all), Macromolecular Substances, Protein Conformation, Molecular Sequence Data, Myosin Subfragments, Muscle, Smooth, Crystallography, X-Ray, Actins, Protein Structure, Tertiary, Adenosine Diphosphate, Animals, Dictyostelium, Amino Acid Sequence, Chickens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    631
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
631
Top 1%
Top 1%
Top 0.1%
hybrid