Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2000
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2000 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Dorsal and Lateral Fates in the Mouse Neural Tube Require the Cell-Autonomous Activity of the open brain Gene

Authors: Kathryn V. Anderson; Jonathan T. Eggenschwiler;

Dorsal and Lateral Fates in the Mouse Neural Tube Require the Cell-Autonomous Activity of the open brain Gene

Abstract

The processes that specify early regional identity in dorsal and lateral regions of the mammalian neural tube are not well understood. The mouse open brain (opb) gene plays an essential role in dorsal neural patterning: in the caudal spinal cord of opb mutants, dorsal cell types are absent and markers of ventral fates, including Shh, expand into dorsal regions. Analysis of the opb mutant phenotype and of opb/opb wild-type chimeric embryos reveals that early in neural development, the wild-type opb gene (opb(+)) is required cell autonomously for the expression of Pax7 in dorsal cells and Pax6 in lateral cells. Thus the opb(+) gene product acts intracellularly in the reception or interpretation of signals that determine cell types in the dorsal 80% of the neural tube. At later stages, the lack of opb(+) causes a non-cell-autonomous expansion of ventral cell types into dorsal regions of the neural tube, revealing that opb(+) controls the production of a diffusible molecule that defines the domain of Shh expression. The data indicate that opb(+) could act as either a novel component of a dorsalizing pathway or a novel intracellular negative regulator of the Shh signal transduction pathway.

Related Organizations
Keywords

Central Nervous System, PAX6 Transcription Factor, Models, Neurological, chimera, Mice, open brain, Animals, Paired Box Transcription Factors, Hedgehog Proteins, Eye Proteins, Molecular Biology, mouse, Body Patterning, Homeodomain Proteins, MSX1 Transcription Factor, Mice, Inbred C3H, Chimera, dorsal–ventral patterning, Sonic hedgehog, spinal cord, PAX7 Transcription Factor, Cell Biology, Mice, Mutant Strains, DNA-Binding Proteins, Mice, Inbred C57BL, Genes, Bone Morphogenetic Proteins, Mutation, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
hybrid