Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43

Authors: Takashi, Nonaka; Fuyuki, Kametani; Tetsuaki, Arai; Haruhiko, Akiyama; Masato, Hasegawa;

Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43

Abstract

TAR DNA binding protein of 43 kDa (TDP-43) is a major component of the ubiquitin-positive inclusions found in the brain of patients with frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Here, we report that expression of TDP-43 C-terminal fragments as green fluorescent protein (GFP) fusions in SH-SY5Y cells results in the formation of abnormally phosphorylated and ubiquitinated inclusions that are similar to those found in FTLD-U and ALS. Co-expression of DsRed-tagged full-length TDP-43 with GFP-tagged C-terminal fragments of TDP-43 causes formation of cytoplasmic inclusions positive for both GFP and DsRed. Cells with GFP and DsRed positive inclusions lack normal nuclear staining for endogenous TDP-43. These results suggest that GFP-tagged C-terminal fragments of TDP-43 are bound not only to transfected DsRed-full-length TDP-43 but also to endogenous TDP-43. Endogenous TDP-43 may be recruited to cytoplasmic aggregates of TDP-43 C-terminal fragments, which results in the failure of its nuclear localization and function. Interestingly, expression of GFP-tagged TDP-43 C-terminal fragments harboring pathogenic mutations that cause ALS significantly enhances the formation of inclusions. We also identified cleavage sites of TDP-43 C-terminal fragments deposited in the FTLD-U brains using mass spectrometric analyses. We propose that generation and aggregation of phosphorylated C-terminal fragments of TDP-43 play a primary role in the formation of inclusions and resultant loss of normal TDP-43 localization, leading to neuronal degeneration in TDP-43 proteinopathy.

Keywords

DNA-Binding Proteins, Chlorocebus aethiops, Mutation, Intracellular Space, Animals, Brain, Humans, Amino Acid Sequence, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    265
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
265
Top 1%
Top 1%
Top 1%
bronze