Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation

Authors: Daniel A. Hahn; Olivia C. Eller; Theodore J. Morgan; Alison R. Gerken;

Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation

Abstract

Significance Mitigating thermal stress through evolutionary adaptation or physiological plasticity is critical for species’ persistence in changing climates. Sparse knowledge of genetic and physiological architectures of thermal plasticity hampers our ability to predict organismal resilience to climate change. Understanding the independence of short- and long-term plasticity and constraints of basal thermotolerance on plasticity is important for understanding responses to climate change. We show heritable genetic variation for basal cold tolerance and plasticity in a midlatitude Drosophila melanogaster population. High long-term plasticity predicted high short-term plasticity, and basal cold tolerance constrained both plasticity measures. There was no overlap in SNPs associated with either plasticity type. Overlapping molecular function of SNPs suggests shared physiology between long- and short-term plasticity, despite distinct genetic architectures.

Related Organizations
Keywords

Male, Hot Temperature, Acclimatization, Climate Change, Biological Evolution, Polymorphism, Single Nucleotide, Cold Temperature, Drosophila melanogaster, Phenotype, Mutation, Animals, Female, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    137
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
137
Top 1%
Top 10%
Top 1%
bronze