<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation

Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation
Significance Mitigating thermal stress through evolutionary adaptation or physiological plasticity is critical for species’ persistence in changing climates. Sparse knowledge of genetic and physiological architectures of thermal plasticity hampers our ability to predict organismal resilience to climate change. Understanding the independence of short- and long-term plasticity and constraints of basal thermotolerance on plasticity is important for understanding responses to climate change. We show heritable genetic variation for basal cold tolerance and plasticity in a midlatitude Drosophila melanogaster population. High long-term plasticity predicted high short-term plasticity, and basal cold tolerance constrained both plasticity measures. There was no overlap in SNPs associated with either plasticity type. Overlapping molecular function of SNPs suggests shared physiology between long- and short-term plasticity, despite distinct genetic architectures.
- Florida Southern College United States
- Kansas State University United States
Male, Hot Temperature, Acclimatization, Climate Change, Biological Evolution, Polymorphism, Single Nucleotide, Cold Temperature, Drosophila melanogaster, Phenotype, Mutation, Animals, Female, Genome-Wide Association Study
Male, Hot Temperature, Acclimatization, Climate Change, Biological Evolution, Polymorphism, Single Nucleotide, Cold Temperature, Drosophila melanogaster, Phenotype, Mutation, Animals, Female, Genome-Wide Association Study
35 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).137 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%