Determining Plasma Protein Variation Parameters as a Prerequisite for Biomarker Studies—A TMT-Based LC-MSMS Proteome Investigation
Determining Plasma Protein Variation Parameters as a Prerequisite for Biomarker Studies—A TMT-Based LC-MSMS Proteome Investigation
Specific plasma proteins serve as valuable markers for various diseases and are in many cases routinely measured in clinical laboratories by fully automated systems. For safe diagnostics and monitoring using these markers, it is important to ensure an analytical quality in line with clinical needs. For this purpose, information on the analytical and the biological variation of the measured plasma protein, also in the context of the discovery and validation of novel, disease protein biomarkers, is important, particularly in relation to for sample size calculations in clinical studies. Nevertheless, information on the biological variation of the majority of medium-to-high abundant plasma proteins is largely absent. In this study, we hypothesized that it is possible to generate data on inter-individual biological variation in combination with analytical variation of several hundred abundant plasma proteins, by applying LC-MS/MS in combination with relative quantification using isobaric tagging (10-plex TMT-labeling) to plasma samples. Using this analytical proteomic approach, we analyzed 42 plasma samples prepared in doublets, and estimated the technical, inter-individual biological, and total variation of 265 of the most abundant proteins present in human plasma thereby creating the prerequisites for power analysis and sample size determination in future clinical proteomics studies. Our results demonstrated that only five samples per group may provide sufficient statistical power for most of the analyzed proteins if relative changes in abundances >1.5-fold are expected. Seventeen of the measured proteins are present in the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database, and demonstrated remarkably similar biological CV’s to the corresponding CV’s listed in the EFLM database suggesting that the generated proteomic determined variation knowledge is useful for large-scale determination of plasma protein variations.
- University of Southern Denmark Denmark
- Sygehus Lillebælt Denmark
- Odense University Hospital Denmark
inter-individual biological variation; plasma proteins; plasma proteomics; power analysis; sample size determination, plasma proteomics, Plasma proteins, Plasma proteomics, Sample size determination, power analysis, Microbiology, QR1-502, Article, inter-individual biological variation, Power analysis, sample size determination, Inter-individual biological variation, plasma proteins
inter-individual biological variation; plasma proteins; plasma proteomics; power analysis; sample size determination, plasma proteomics, Plasma proteins, Plasma proteomics, Sample size determination, power analysis, Microbiology, QR1-502, Article, inter-individual biological variation, Power analysis, sample size determination, Inter-individual biological variation, plasma proteins
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
