Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AJP Renal Physiology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats

Authors: Kim, Soo Wan; Wang, Weidong; Nielsen, Jakob; Prætorius, Jeppe; Kwon, Tae-Hwan; Knepper, Mark A; Frøkiaer, Jørgen; +1 Authors

Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats

Abstract

Nephrotic syndrome is often accompanied by sodium retention and generalized edema. However, the molecular basis for the decreased renal sodium excretion remains undefined. We hypothesized that epithelial Na channel (ENaC) subunit dysregulation may be responsible for the increased sodium retention. An experimental group of rats was treated with puromycin aminonucleoside (PAN; 180 mg/kg iv), whereas the control group received only vehicle. After 7 days, PAN treatment induced significant proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and extensive ascites. The protein abundance of α-ENaC and β-ENaC was increased in the inner stripe of the outer medulla (ISOM) and in the inner medulla (IM) but was not altered in the cortex. γ-ENaC abundance was increased in the cortex, ISOM, and IM. Immunoperoxidase brightfield- and laser-scanning confocal fluorescence microscopy demonstrated increased targeting of α-ENaC, β-ENaC, and γ-ENaC subunits to the apical plasma membrane in the distal convoluted tubule (DCT2), connecting tubule, and cortical and medullary collecting duct segments. Immunoelectron microscopy further revealed an increased labeling of α-ENaC in the apical plasma membrane of cortical collecting duct principal cells of PAN-treated rats, indicating enhanced apical targeting of α-ENaC subunits. In contrast, the protein abundances of Na+/H+exchanger type 3 (NHE3), Na+-K+-2Cl-cotransporter (BSC-1), and thiazide-sensitive Na+-Cl-cotransporter (TSC) were decreased. Moreover, the abundance of the α1-subunit of the Na-K-ATPase was decreased in the cortex and ISOM, but it remained unchanged in the IM. In conclusion, the increased or sustained expression of ENaC subunits combined with increased apical targeting in the DCT2, connecting tubule, and collecting duct are likely to play a role in the sodium retention associated with PAN-induced nephrotic syndrome. The decreased abundance of NHE3, BSC-1, TSC, and Na-K-ATPase may play a compensatory role to promote sodium excretion.

Related Organizations
Keywords

Antimetabolites, Antineoplastic, Nephrotic Syndrome, Sodium-Potassium-Chloride Symporters, Receptors, Drug, Sodium-Hydrogen Antiporter, Puromycin Aminonucleoside, Sodium Channels, Mice, Animals, Edema, Kidney Tubules, Collecting, Rats, Wistar, Epithelial Sodium Channels, Microscopy, Immunoelectron, Aldosterone, Symporters, Cell Membrane, Sodium, Water, Cell Polarity, Epithelial Sodium Channel, Immunohistochemistry, Sodium Chloride Symporters, Up-Regulation, Rats, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%