Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation
Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation
AbstractThe mechanism of cytotoxicity of farnesyltransferase inhibitors is incompletely understood and seems to vary depending on the cell type. To identify potential determinants of sensitivity or resistance for study in the accompanying clinical trial (Witzig et al, page 4882), we examined the mechanism of cytotoxicity of tipifarnib in human lymphoid cell lines. Based on initial experiments showing that Jurkat variants lacking Fas-associated death domain or procaspase-8 undergo tipifarnib-induced apoptosis, whereas cells lacking caspase-9 or overexpressing Bcl-2 do not, we examined changes in Bcl-2 family members. Tipifarnib caused dose-dependent up-regulation of Bim in lymphoid cell lines (Jurkat, Molt3, H9, DoHH2, and RL) that undergo tipifarnib-induced apoptosis but not in lines (SKW6.4 and Hs445) that resist tipifarnib-induced apoptosis. Further analysis demonstrated that increased Bim levels reflect inhibition of signaling from c-Raf to MEK1/2 and ERK1/2. Additional experiments showed that down-regulation of the Ras guanine nucleotide exchange factor RasGRP1 diminished tipifarnib sensitivity, suggesting that H-Ras or N-Ras is a critical farnesylation target upstream of c-Raf in lymphoid cells. These results not only trace a pathway through c-Raf to Bim that contributes to tipifarnib cytotoxicity in human lymphoid cells but also identify potential determinants of sensitivity to this agent.
- Mayo Clinic United States
Bcl-2-Like Protein 11, Cytotoxins, MAP Kinase Signaling System, Drug Evaluation, Preclinical, Down-Regulation, Membrane Proteins, Mitochondria, Up-Regulation, Jurkat Cells, Cell Line, Tumor, Proto-Oncogene Proteins, Farnesyltranstransferase, Humans, Lymphocytes, Enzyme Inhibitors, Phosphorylation, Apoptosis Regulatory Proteins, Extracellular Signal-Regulated MAP Kinases, Cell Proliferation
Bcl-2-Like Protein 11, Cytotoxins, MAP Kinase Signaling System, Drug Evaluation, Preclinical, Down-Regulation, Membrane Proteins, Mitochondria, Up-Regulation, Jurkat Cells, Cell Line, Tumor, Proto-Oncogene Proteins, Farnesyltranstransferase, Humans, Lymphocytes, Enzyme Inhibitors, Phosphorylation, Apoptosis Regulatory Proteins, Extracellular Signal-Regulated MAP Kinases, Cell Proliferation
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
