Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bone and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Bone and Mineral Research
Article . 2009 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1

Authors: Marion Julien; Solmaz Khoshniat; Aline Lacreusette; Maithé Gatius; Aline Bozec; Erwin F Wagner; Yohann Wittrant; +5 Authors

Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1

Abstract

Abstract Inorganic phosphate (Pi) and the matrix Gla protein (MGP) are key regulators of bone formation. We have recently shown that Pi upregulates MGP in growth plate chondrocytes, which may represent a negative feedback loop for the control of mineralization. Osteoblasts from Fra-1-deleted mice express low levels of MGP, whereas the expression of MGP is elevated in Fra-1 transgenic osteoblasts, suggesting a role for Fra-1 in MGP expression and bone formation. In this study, we aimed at deciphering the relationships between Pi and MGP in osteoblasts to determine the molecular mechanisms involved in the Pi-dependent regulation of MGP. In MC3T3-E1 cells and primary calvaria-derived osteoblasts, Pi increased MGP and Fra-1 expression at both the mRNA and protein levels. We also found that Pi enhanced the phosphorylation of ERK1/2. U0126 (MEK1/2 inhibitor) suppressed Pi-stimulated MGP and Fra-1 expression, indicating that ERK1/2 is required for Pi-dependent regulation of MGP and Fra-1. In addition, using in vitro DNA binding and chromatin immunoprecipitation assays, we showed that Fra-1 interacts with the MGP promoter in response to Pi in MC3T3-E1 cells. Finally, we found that in fra-1 knockdown MC3T3-E1 osteoblasts, the level of MGP expression is no more significantly upregulated by Pi. We further showed that primary osteoblasts from Fra-1-deficient mice failed to exhibit a Pi-dependent stimulation of MGP expression. These data show, for the first time, that Pi regulates MGP expression in osteoblasts through the ERK1/2-Fra-1 pathway.

Keywords

Mitogen-Activated Protein Kinase 1, Chromatin Immunoprecipitation, Extracellular Matrix Proteins, Matrix Gla Protein, Mitogen-Activated Protein Kinase 3, Osteoblasts, Calcium-Binding Proteins, Cell Line, Phosphates, Mice, Gene Expression Regulation, Nitriles, Butadienes, Animals, Phosphorylation, RNA, Small Interfering, Promoter Regions, Genetic, Proto-Oncogene Proteins c-fos, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 1%
Top 10%
Top 10%
hybrid