Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Human Neuropathy Target Esterase Catalyzes Hydrolysis of Membrane Lipids

Authors: Marianne, van Tienhoven; Jane, Atkins; Yong, Li; Paul, Glynn;

Human Neuropathy Target Esterase Catalyzes Hydrolysis of Membrane Lipids

Abstract

A neuronal membrane protein, neuropathy target esterase (NTE), reacts with those organophosphates that initiate a syndrome of axonal degeneration. NTE has homologues in Drosophila and yeast and is detected in vitro by assays with a non-physiological ester substrate, phenyl valerate. We report that NEST, the recombinant esterase domain of NTE (residues 727-1216) purified from bacterial lysates, can catalyze hydrolysis of several naturally occurring membrane-associated lipids. The active site regions of NEST and calcium-independent phospholipase A(2) (iPLA(2)) share sequence similarity, and the phenyl valerate hydrolase activity of NEST is inhibited by low concentrations of iPLA(2) inhibitors. However, on incubation with NEST, fatty acid was liberated only extremely slowly from the sn-2 position of phospholipids (V(max) approximately 0.01 micromol/min/mg and K(m) approximately 0.4 mm for 1-palmitoyl, 2-oleoylphosphatidylcholine). Comparison of the NEST-mediated generation of (14)C-labeled products from two differentially labeled (14)C-phospholipid substrates suggested that a rate-limiting sn-2 cleavage was followed very rapidly by hydrolysis of the resulting lysophospholipid. Among the various naturally occurring lipids tested with NEST, lysophospholipids were by far the most avidly hydrolyzed substrates (V(max) approximately 20 micromol/min/mg and K(m) approximately 0.05 mm for 1-palmitoyl-lysophosphatidylcholine). NEST also catalyzed the hydrolysis of monoacylglycerols, preferring the 1-acyl to the 2-acyl isomer (V(max) approximately 1 micromol/min/mg and K(m) approximately 0.4 mm for 1-palmitoylglycerol). NEST did not catalyze hydrolysis of di- or triacylglycerols or fatty acid amides. This demonstration that membrane lipids are its putative cellular substrates raises the possibility that NTE and its homologues may be involved in intracellular membrane trafficking.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Hydrolysis, Molecular Sequence Data, Fatty Acids, Nonesterified, Catalysis, Phospholipases A, Membrane Lipids, Humans, Calcium, Amino Acid Sequence, Enzyme Inhibitors, Lysophospholipids, Carboxylic Ester Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    158
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
158
Top 10%
Top 10%
Top 10%
gold