Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2010 . Peer-reviewed
Data sources: Crossref
Development
Article . 2010
versions View all 2 versions

LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro

Authors: Erica, Balzer; Christian, Heine; Qiang, Jiang; Vivian M, Lee; Eric G, Moss;

LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro

Abstract

LIN28 is an RNA-binding protein that is expressed in many developing tissues. It can block let-7 (Mirlet7) microRNA processing and help promote pluripotency. We have observed LIN28 expression in the developing mouse neural tube, colocalizing with SOX2, suggesting a role in neural development. To better understand its normal developmental function, we investigated LIN28 activity during neurogliogenesis in vitro, where the succession of neuronal to glial cell fates occurs as it does in vivo. LIN28 expression was high in undifferentiated cells, and was downregulated rapidly upon differentiation. Constitutive LIN28 expression caused a complete block of gliogenesis and an increase in neurogenesis. LIN28 expression was compatible with neuronal differentiation and did not increase proliferation. LIN28 caused significant changes in gene expression prior to any effect on let-7, notably on Igf2. Furthermore, a mutant LIN28 that permitted let-7 accumulation was still able to completely block gliogenesis. Thus, at least two biological activities of LIN28 are genetically separable and might involve distinct mechanisms. LIN28 can differentially promote and inhibit specific fates and does not function exclusively by blocking let-7 family microRNAs. Importantly, the role of LIN28 in cell fate succession in vertebrate cells is analogous to its activity as a developmental timing regulator in C. elegans.

Keywords

Neural Tube, Neurogenesis, Gene Expression Regulation, Developmental, RNA-Binding Proteins, Cell Count, Cell Differentiation, Embryo, Mammalian, Protein Structure, Tertiary, Mice, MicroRNAs, Animals, Neuroglia, Cells, Cultured, Conserved Sequence, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    177
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
177
Top 1%
Top 10%
Top 1%
bronze