Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions

Expression and localisation of dynamin and syntaxin during neural development and neuromuscular synapse formation

Authors: Noakes, P. G.; Chin, D.; Kim, S. S.; Liang, S.; Phillips, W. D.;

Expression and localisation of dynamin and syntaxin during neural development and neuromuscular synapse formation

Abstract

The expression and subcellular localisation of dynamin and syntaxin were examined during the periods of motor neuron development and neuromuscular synaptogenesis in the mouse embryo. Both dynamin and syntaxin could be detected by immunoblotting in the spinal cord at embryonic day 10 (E10; 2 days before axon outgrowth) and at all subsequent ages examined. Reverse transcription and polymerase chain reaction (RT-PCR) identified low levels of all three carboxy-terminal splicing forms of dynamin I in spinal cord from as early as E10. During the period of maturation of spinal neurons, from E10 to the first postnatal day (P0), the short carboxy-terminal splicing form of dynamin I (dynamin I*b) was up-regulated, as was dynamin III, relative to dynamin II mRNA. Syntaxin immunostaining became colocalized with the synaptic vesicle protein, SV2, at neuromuscular synapses within 12 hours of the commencement of synapse formation and throughout subsequent development. In contrast, dynamin, which is important for activity-dependent synaptic vesicle recycling and, thus, sustained neurotransmission, could not be detected at most newly formed synapses until several days after synapse formation. The delayed appearance of dynamin at the synapse, thus, heralds the neonatal development of robust synaptic transmission at the neuromuscular junction.

Keywords

Dynamins, 571, Skeletal Muscle, Neuromuscular Junction, Gene Expression, Src Homology-3 Domain, Nervous System, GTP Phosphohydrolases, Embryonic and Fetal Development, Mice, C1, Animals, Protein Isoforms, Family, Tissue Distribution, Vesicles, Dynamin I, 320700 Neurosciences, 270107 Cell Neurochemistry, Qa-SNARE Proteins, Protein, Neurosciences, Membrane Proteins, 730104 Nervous system and disorders, Embryo, Mammalian, Endocytosis, Nerve-terminals, Mice, Inbred C57BL, Animals, Newborn, Spinal Cord, Spinal-cord, 730114 Skeletal system and disorders (incl. arthritis), Embryogenesis, Synapses, Rat, Zoology, Acetylcholine-receptors, Member, Dynamin III

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%