Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Life Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Life Sciences
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Life Sciences
Article . 2002
versions View all 2 versions

Identification of a tachykinin NK2 receptor splice variant and its expression in human and rat tissues

Authors: Cristina G. Cintado; Juan M Loizaga; M. Luz Candenas; Francisco M. Pinto; Jocelyn N. Pennefather; M.Teresa Pereda; Carlo Alberto Maggi;

Identification of a tachykinin NK2 receptor splice variant and its expression in human and rat tissues

Abstract

The tachykinins substance P, neurokinin A and neurokinin B are implicated in different diseases and play an important role in neuroimmunomodulation. These peptides interact with three distinct types of tachykinin receptors termed NK(1), NK(2) and NK(3). While most mammalian genes encoding G protein-coupling cell membrane receptors are intron-less, the three tachykinin receptors contain introns in their genomic structures. In the present study, we have identified a splice variant of the tachykinin NK(2) receptor that results from skipping of exon 2 in the processing of the tachykinin NK(2) receptor mRNA. By using reverse transcription-polymerase chain reaction analysis, we observed that the tachykinin NK(2) receptor splice variant, that we named NK(2)beta, appeared in different human and rat tissues that also express the wild type, tachykinin NK(2)alpha isoform. Compared to tachykinin receptor NK(2)alpha isoform mRNA levels, the NK(2)beta isoform was strongly expressed in human and rat uteri, expressed in a moderate degree in the rat urinary bladder, colon, duodenum and stomach and unexpressed in the rat cerebral cortex, kidney, thoracic aorta, skeletal muscle and heart. These data describe the first known tachykinin receptor splice variant and suggest that the variety of tachykinin receptors may be further expanded through the generation of splicing isoforms. The presence of the truncated isoform may have a physiological significance in the regulation of tachykinin NK(2) receptor protein levels.

Keywords

Adult, Receptors, Neurokinin-2, Middle Aged, Rats, Alternative Splicing, Animals, Humans, Female, Tissue Distribution, RNA, Messenger, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%