Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Neuroscience
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Alterations of CXCR4 function in μ‐opioid receptor‐deficient glia

Authors: Silvia, Burbassi; Rajarshi, Sengupta; Olimpia, Meucci;

Alterations of CXCR4 function in μ‐opioid receptor‐deficient glia

Abstract

AbstractThe chemokine receptor CXCR4 and the μ‐opioid receptor (MOR) are G‐protein‐coupled receptors that are essential for normal function of the nervous and immune systems. Several studies have suggested that MOR is a key regulator of CXCR4 in the brain; however, the molecular basis of the opioid–chemokine interaction is not fully understood, and it may involve different mechanisms in neuronal and glial cells. Our previous studies demonstrated that MOR stimulation specifically upregulates the protein ferritin heavy chain – an inhibitor of CXCR4 – in neurons, and suggested that additional mechanisms could be operative in glia. In this study, we investigated CXCR4 function in brains and astroglial cultures deprived of MOR. Reduced coupling of CXCR4 to G‐proteins was found in brain slices and tissue homogenates of MOR−/− mice as compared with wild‐type controls. CXCR4‐induced signaling was also reduced in glial cultures from MOR−/− mice, as shown by analysis of CXCR4 downstream targets (Akt and ERK1/2). Pharmacological studies with δ‐opioid receptor (DOR)‐specific ligands suggested that DOR–CXCR4 interactions are implicated in the inhibition of CXCR4 in MOR‐deficient cells both in vitro and in vivo. Moreover, increased CXCR4/DOR co‐immunoprecipitation was found in brain tissue and cultured glia from MOR−/− mice. Importantly, CXCR4 function was restored by pretreatment with a DOR antagonist. Overall, these findings indicate that DOR plays a crucial role in the regulation of CXCR4 in glia, probably via silent receptor heterodimers. The data also suggest that the opiate system interferes with normal CXCR4 function in different ways, depending on receptor subtypes.

Related Organizations
Keywords

Mice, Knockout, Neurons, Receptors, CXCR4, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Receptors, Opioid, mu, Brain, Mice, Receptors, Opioid, delta, Animals, Immunoprecipitation, Extracellular Signal-Regulated MAP Kinases, Neuroglia, Proto-Oncogene Proteins c-akt, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
bronze