AMPK Dilates Resistance Arteries via Activation of SERCA and BK Ca Channels in Smooth Muscle
pmid: 26034200
AMPK Dilates Resistance Arteries via Activation of SERCA and BK Ca Channels in Smooth Muscle
The protective effects of 5′-AMP–activated protein kinase (AMPK) on the metabolic syndrome may include direct effects on resistance artery vasomotor function. However, the precise actions of AMPK on microvessels and their potential interaction are largely unknown. Thus, we set to determine the effects of AMPK activation on vascular smooth muscle tone and the underlying mechanisms. Resistance arteries isolated from hamster and mouse exhibited a pronounced endothelium-independent dilation on direct pharmacological AMPK activation by 2 structurally unrelated compounds (PT1 and A769662). The dilation was associated with a decrease of intracellular-free calcium [Ca 2+ ] i in vascular smooth muscle cell. AMPK stimulation induced activation of BK Ca channels as assessed by patch clamp studies in freshly isolated hamster vascular smooth muscle cell and confirmed by direct proof of membrane hyperpolarization in intact arteries. The BK Ca channel blocker iberiotoxin abolished the hyperpolarization but only partially reduced the dilation and did not affect the decrease of [Ca 2+ ] i . By contrast, the sarcoplasmic/endoplasmic Ca 2+ -ATPase (SERCA) inhibitor thapsigargin largely reduced these effects, whereas combined inhibition of SERCA and BK Ca channels virtually abolished them. AMPK stimulation significantly increased the phosphorylation of the SERCA modulator phospholamban at the regulatory T17 site. Stimulation of smooth muscle AMPK represents a new, potent vasodilator mechanism in resistance vessels. AMPK directly relaxes vascular smooth muscle cell by a decrease of [Ca 2+ ] i . This is achieved by calcium sequestration via SERCA activation, as well as activation of BK Ca channels. There is in part a mutual compensation of both calcium-lowering mechanisms. However, SERCA activation which involves an AMPK-dependent phosphorylation of phospholamban is the predominant mechanism in resistance vessels.
- University of Cologne Germany
- University of Tübingen Germany
- University of Dundee United Kingdom
- Ludwig-Maximilians-Universität München Germany
Indoles, Mesocricetus, Calcium-Binding Proteins, 610, AMP-Activated Protein Kinases, Muscle, Smooth, Vascular, Membrane Potentials, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Enzyme Activation, Mice, Inbred C57BL, Vasodilation, Mice, Cricetinae, Animals, Thapsigargin, Vascular Resistance, Calcium Signaling, RNA, Messenger, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Peptides, Cells, Cultured
Indoles, Mesocricetus, Calcium-Binding Proteins, 610, AMP-Activated Protein Kinases, Muscle, Smooth, Vascular, Membrane Potentials, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Enzyme Activation, Mice, Inbred C57BL, Vasodilation, Mice, Cricetinae, Animals, Thapsigargin, Vascular Resistance, Calcium Signaling, RNA, Messenger, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Peptides, Cells, Cultured
45 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
