Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Omegaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article
License: acs-specific: authorchoice/editors choice usage agreement
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2019
Data sources: DOAJ
versions View all 4 versions

Effect of Reaction Temperature on Shape Evolution of Palladium Nanoparticles and Their Cytotoxicity against A-549 Lung Cancer Cells

Authors: Gulam Abbas; Narinder Kumar; Devesh Kumar; Gajanan Pandey;

Effect of Reaction Temperature on Shape Evolution of Palladium Nanoparticles and Their Cytotoxicity against A-549 Lung Cancer Cells

Abstract

Palladium nanoparticles (Pd NPs) of different shapes and sizes have been synthesized by reducing potassium tetrachloropalladinate(II) by l-ascorbic acid (AA) in an aqueous solution phase in the presence of an amphiphilic nonionic surfactant poly ethylene glycol (PEG) via a sonochemical method. Materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray soectrscopy (EDX), Fourier transform infrared (FTIR), surface-enhanced Raman spectroscopy (SERS), particle distribution, and zeta potential studies. Truncated octahedron/fivefold twinned pentagonal rods are formed at room temperature (RT) (25 °C) while hexagonal/trigonal plates are formed at 65 °C. XRD results show evolution of anisotropically grown, phase-pure, and well crystalline face-centered cubic Pd NPs at both temperatures. FTIR and SERS studies revealed adsorption of ascorbic acid (AA) and PEG at NP's surface. Particle's size distribution graph indicates formation of particles having wide size distribution while the zeta potential particle surface is negatively charged and stable. The truncated octahedron/fivefold twinned pentagonal rod-shaped Pd NPs, formed at RT, while thermally stable and kinetically controlled hexagonal/trigonal plate-like Pd NPs, evolved at higher temperature 65 °C. The obtained Pd NPs have a high surface area and narrow pore size distribution. To predict protein reactivity of the Pd cluster, docking has been done with DNA and lung cancer-effective proteins. The cytotoxicity of the Pd NPs has been screened on human lung cancer cells A-549 at 37 °C. The biological adaptability exhibited by Pd NPs has opened a pathway in biochemical applications.

Related Organizations
Keywords

Chemistry, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
gold
Related to Research communities
Cancer Research