Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut National de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ProdInra
Article . 2012
License: CC BY SA
Data sources: ProdInra
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2012
Data sources: HAL INRAE
Journal of Experimental Botany
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

Authors: Routaboul, Jean-Marc, J.-M.; Skidmore, Chris, C.; Wallis, James G., J. G.; Browse, John, J.;

Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

Abstract

The photosynthetic thylakoid has the highest level of lipid unsaturation of any membrane. In Arabidopsis thaliana plants grown at 22°C, approximately 70% of the thylakoid fatty acids are trienoic - they have three double bonds. In Arabidopsis, and other species, the levels of trienoic fatty acids decline substantially at higher temperatures. Several genetic studies indicate that reduced unsaturation improves photosynthetic function and plant survival at high temperatures. Here, these studies are extended using the Arabidopsis triple mutant, fad3-2 fad7-2 fad8 that contains no detectable trienoic fatty acids. In the short-term, fluorescence analyses and electron-transport assays indicated that photosynthetic functions in this mutant are more thermotolerant than the wild type. However, long-term photosynthesis, growth, and survival of plants were all compromised in the triple mutant at high temperature. The fad3-2 fad7-2 fad8 mutant is deficient in jasmonate synthesis and this hormone has been shown to mediate some aspects of thermotolerance; however, additional experiments demonstrated that a lack of jasmonate was not a major factor in the death of triple-mutant plants at high temperature. The results indicate that long-term thermotolerance requires a basal level of trienoic fatty acids. Thus, the success of genetic and molecular approaches to increase thermotolerance by reducing membrane unsaturation will be limited by countervailing effects that compromise essential plant functions at elevated temperatures.

Keywords

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences, Fatty Acid Desaturases, [SDV.SA] Life Sciences [q-bio]/Agricultural sciences, photosynthesis, Arabidopsis Proteins, Arabidopsis, Temperature, arabidopsis;high temperature;lipid unsaturation;photosynthesis;thermotolerance, Plants, Genetically Modified, Research Papers, thermotolerance, high temperature, arabidopsis, Fatty Acids, Unsaturated, lipid unsaturation, Photosynthesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Average
Green
hybrid