Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge
pmid: 10608663
Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge
Selected strains of nonpathogenic rhizobacteria from the genus Pseudomonas are capable of eliciting broad-spectrum induced systemic resistance (ISR) in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In Arabidopsis, the ISR pathway functions independently of salicylic acid (SA) but requires responsiveness to jasmonate and ethylene. Here, we demonstrate that known defense-related genes, i.e. the SA-responsive genes PR-1, PR-2, and PR-5, the ethylene-inducible gene Hel, the ethylene- and jasmonate-responsive genes ChiB and Pdf1.2, and the jasmonate-inducible genes Atvsp, Lox1, Lox2, Pall, and Pin2, are neither induced locally in the roots nor systemically in the leaves upon induction of ISR by Pseudomonas fluorescens WCS417r. In contrast, plants infected with the virulent leaf pathogen Pseudomonas syringae pv. tomato (Pst) or expressing SAR induced by preinfecting lower leaves with the avirulent pathogen Pst(avrRpt2) exhibit elevated expression levels of most of the defense-related genes studied. Upon challenge inoculation with Pst, PR gene transcripts accumulated to a higher level in SAR-expressing plants than in control-treated and ISR-expressing plants, indicating that SAR involves potentiation of SA-responsive PR gene expression. In contrast, pathogen challenge of ISR-expressing plants led to an enhanced level of Atvsp transcript accumulation. The otherjasmonate-responsive defense-related genes studied were not potentiated during ISR, indicating that ISR is associated with the potentiation of specific jasmonate-responsive genes.
- Utrecht University Netherlands
- Graduate School Experimental Plant Sciences Netherlands
Arabidopsis, Cyclopentanes, Acetates, Genes, Plant, Pseudomonas fluorescens, Plant Growth Regulators, Gene Expression Regulation, Plant, Pseudomonas, Taverne, Oxylipins, Plant biology (Botany), Plant Diseases, Plant Proteins, Virulence, Arabidopsis Proteins, Life sciences, Plant Leaves, International, Salicylic Acid, Biologie
Arabidopsis, Cyclopentanes, Acetates, Genes, Plant, Pseudomonas fluorescens, Plant Growth Regulators, Gene Expression Regulation, Plant, Pseudomonas, Taverne, Oxylipins, Plant biology (Botany), Plant Diseases, Plant Proteins, Virulence, Arabidopsis Proteins, Life sciences, Plant Leaves, International, Salicylic Acid, Biologie
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).223 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
