Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Induction of Plasminogen Activator Inhibitor-1 by Urokinase in Lung Epithelial Cells

Authors: Sreerama, Shetty; Khalil, Bdeir; Douglas B, Cines; Steven, Idell;

Induction of Plasminogen Activator Inhibitor-1 by Urokinase in Lung Epithelial Cells

Abstract

The plasminogen/plasmin system, urokinase-type plasminogen activator (uPA), its receptor (uPAR), and its inhibitor (PAI-1), influence extracellular proteolysis and cell migration in lung injury or neoplasia. In this study, we sought to determine whether tcuPA (two chain uPA) alters expression of its major inhibitor PAI-1 in lung epithelial cells. The expression of PAI-1 was evaluated at the protein and mRNA level by Western blot, immunoprecipitation, and Northern blot analyses. We found that tcuPA treatment enhanced PAI-1 protein and mRNA expression in Beas2B lung epithelial cells in a time- and concentration-dependent manner. The tcuPA-mediated induction of PAI-1 involves post-transcriptional control involving stabilization of PAI-1 mRNA. Inactivation of the catalytic activity of tcuPA had little effect on PAI-1 induction and the activity of the isolated amino-terminal fragment was comparable with full-length single- or two-chain uPA. In contrast, deletion of either the uPA receptor binding growth factor domain or kringle domain (kringle) from full-length single chain uPA markedly attenuated the induction of PAI-1. Induction of PAI-1 by exposure of lung epithelial cells to uPA is a newly recognized pathway by which PAI-1 could regulate local fibrinolysis and urokinase-dependent cellular responses in the setting of lung inflammation or neoplasia.

Keywords

Cell Nucleus, DNA, Complementary, Time Factors, Dose-Response Relationship, Drug, Blotting, Western, Epithelial Cells, Protein-Tyrosine Kinases, Blotting, Northern, Ligands, Precipitin Tests, Catalysis, Protein Structure, Tertiary, Catalytic Domain, Plasminogen Activator Inhibitor 1, Humans, RNA, Messenger, Lung, Cell Division, Cells, Cultured, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
gold