Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Conditional Knockdown of Tubedown-1 in Endothelial Cells Leads to Neovascular Retinopathy

Authors: Karina Leblanc; Ewa Miskiewicz; Dana S. Wall; Robert L. Gendron; He´le`ne Paradis; Mandy L. Woodland; William V. Good;

Conditional Knockdown of Tubedown-1 in Endothelial Cells Leads to Neovascular Retinopathy

Abstract

Identification of novel proteins involved in retinal neovascularization may facilitate new and more effective molecular-based treatments for proliferative retinopathy. Tubedown-1 (Tbdn-1) is a novel protein that shows homology to the yeast acetyltransferase subunit NAT1 and copurifies with an acetyltransferase activity. Tbdn-1 is expressed in normal retinal endothelium but is specifically suppressed in retinal endothelial cells from patients with proliferative diabetic retinopathy. The purpose of this study was to investigate the importance of Tbdn-1 expression in retinal blood vessels in vivo.A bitransgenic mouse model that enables conditional knockdown of Tbdn-1 specifically in endothelial cells was produced and studied using molecular, histologic, and immunohistochemical techniques and morphometric analysis.Tbdn-1-suppressed mice exhibited retinal and choroidal neovascularization with intra- and preretinal fibrovascular lesions similar to human proliferative retinopathies. Retinal lesions observed in Tbdn-1-suppressed mice increased in severity with prolonged suppression of Tbdn-1. In comparison to normal retina, the retinal lesions displayed alterations in the basement membrane of blood vessels and in the distribution of glial and myofibroblastic cells. Moreover, the pathologic consequences of Tbdn-1 knockdown in endothelium were restricted to the retina and the choroid.These results indicate that the maintenance of Tbdn-1 expression is important for retinal blood vessel homeostasis and for controlling retinal neovascularization in adults. Restoration of Tbdn-1 protein expression and/or activity may provide a novel approach for treating proliferative retinopathies.

Keywords

Male, Blotting, Western, Retinal Vessels, Mice, Transgenic, Retinal Neovascularization, Receptor, TIE-2, Gene Expression Regulation, Enzymologic, Immunoenzyme Techniques, Mice, Inbred C57BL, Mice, Acetyltransferases, Animals, Female, Endothelium, Vascular, Antibodies, Blocking

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
gold