Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2015 . Peer-reviewed
Data sources: Crossref
MPG.PuRe
Article . 2015
Data sources: MPG.PuRe
versions View all 4 versions

Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity

Authors: Butzlaff, Malte; Hannan, Shabab B.; Voigt, Aaron; Karsten, Peter; Lenz, Sarah; Ng, Josephine; Voßfeldt, Hannes; +4 Authors

Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity

Abstract

The gene mapt codes for the microtubule-associated protein Tau. The R406W amino acid substitution in Tau is associated with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) characterized by Tau-positive filamentous inclusions. These filamentous Tau inclusions are present in a group of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To gain more insights into the pathomechanism of tauopathies, we performed an RNAi-based large-scale screen in Drosophila melanogaster to identify genetic modifiers of Tau[R406W]-induced toxicity. A collection of RNAi lines, putatively silencing more than 7000 genes, was screened for the ability to modify Tau[R406W]-induced toxicity in vivo. This collection covered more than 50% of all protein coding fly genes and more than 90% of all fly genes known to have a human ortholog. Hereby, we identified 62 genes that, when silenced by RNAi, modified Tau-induced toxicity specifically. Among these 62 modifiers were three subunits of the Dynein/Dynactin complex. Analysis on segmental nerves of fly larvae showed that pan neural Tau[R406W] expression and concomitant silencing of Dynein/Dynactin complex members synergistically caused strong pathological changes within the axonal compartment, but only minor changes at synapses. At the larval stage, these alterations did not cause locomotion deficits, but became evident in adult flies. Our data suggest that Tau-induced detrimental effects most likely originate from axonal rather than synaptic dysfunction and that impaired retrograde transport intensifies detrimental effects of Tau in axons. In conclusion, our findings contribute to the elucidation of disease mechanisms in tauopathies like FTDP-17 or AD.

Keywords

info:eu-repo/classification/ddc/570, Male, 570, Mutation, Missense, 610, Dyneins, tau Proteins, Dynactin Complex, Axons, Disease Models, Animal, Protein Transport, Drosophila melanogaster, Alzheimer Disease, Animals, Drosophila Proteins, Humans, Female, RNA Interference, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Green
bronze