Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 1998
versions View all 2 versions

Renal sympathetic nerve activity in mice: comparison between mice and rats and between normal and endothelin-1 deficient mice

Authors: G Y, Ling; W H, Cao; M, Onodera; K H, Ju; H, Kurihara; Y, Kurihara; Y, Yazaki; +3 Authors

Renal sympathetic nerve activity in mice: comparison between mice and rats and between normal and endothelin-1 deficient mice

Abstract

Recently generated knockout mice with disrupted genes encoding endothelin (ET)-1 showed an elevation of arterial blood pressure (AP) and supplied an evidence for intrinsic ET-1 as one of the physiological regulators of systemic AP. Little is yet known, however, why deficiency of ET-1, which was originally found as a potent vasoconstrictor, led to higher AP in these mice. To address this apparent paradox, we first developed a method to measure renal sympathetic nerve activity (RSNA) in mice using rats as reference and successively compared it between normal and ET-1 deficient mice. RSNA was successfully recorded in urethane-anesthetized and artificially ventilated mice by a slight modification of the method used for rats. At basal condition, mean AP (MAP) and RSNA in ET-1 deficient mice (105+/-2 mmHg and 9.71+/-1.49 muVs, n=20) were significantly higher than those in wild-type mice (96+/-2 mmHg and 5. 07+/-0.70 muVs, n=25). Basal heart rate (HR) and baroreflex-control of HR was not significantly different between the two. On the other hand, resting RSNA, RSNA range, and maximum RSNA were significantly greater in ET-1 deficient mice, and thus MAP-RSNA relationship was upwards reset. Hypoxia-induced increase in RSNA was not different between ET-1 deficient (73.4+/-9.4%) and wild-type mice (91.2+/-12.0%), while hypercapnia-induced one was significantly attenuated in ET-1 deficient mice (18.8+/-3.6 vs. 39.1+/-5.2% at 10% CO2). These results indicate that endogenous ET-1 participates in the central chemoreception of CO2 and reflex control of the RSNA. Baroreceptor resetting and normally preserved hypoxia-induced chemoreflex may explain a part of the elevation of AP in ET-1 deficient mice.

Related Organizations
Keywords

Male, Mice, Knockout, Medulla Oblongata, Hypertension, Renal, Sympathetic Nervous System, Endothelin-1, Receptors, Endothelin, Respiration, Blood Pressure, Pressoreceptors, Kidney, Cardiovascular System, Chemoreceptor Cells, Rats, Hypercapnia, Rats, Sprague-Dawley, Mice, Reflex, Animals, Blood Gas Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Average
Top 10%
Top 10%