Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Lung Cancerarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Lung Cancer
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Involvement of LKB1 in epithelial–mesenchymal transition (EMT) of human lung cancer cells

Authors: Badal C, Roy; Takashi, Kohno; Reika, Iwakawa; Tetsuo, Moriguchi; Tohru, Kiyono; Kazuhiro, Morishita; Montse, Sanchez-Cespedes; +2 Authors

Involvement of LKB1 in epithelial–mesenchymal transition (EMT) of human lung cancer cells

Abstract

Epithelial-mesenchymal transition (EMT) is a critical phenotypic alteration of cancer cells that triggers invasion and metastasis. Lung cancer cells often show mesenchymal phenotypes; however, a causative genetic alteration for the induction of EMT in lung cancer cells remains unknown. Recent studies have shown that the LKB1 gene is mutated in up to one-third of lung adenocarcinomas. Therefore, to pursue the possible involvement of LKB1 inactivation in the induction of EMT in lung carcinogenesis, we generated immortalized lung epithelial cells and lung adenocarcinoma cells with stable or transient LKB1 knockdown. LKB1 knockdown increased cell motility and invasiveness, and induced the expression of several mesenchymal marker proteins accompanied by the expression of ZEB1, a transcriptional repressor for E-cadherin and an EMT inducer. In agreement with the recent findings, expression of miR-200a/c was inversely correlated with that of ZEB1 in LKB1 knockdown clones with mesenchymal phenotype. Furthermore, transient knockdown of LKB1 induced ZEB1 mRNA and increased cell motility, and this motility was suppressed by ZEB1 repression. These results strongly indicate that LKB1 inactivation triggers EMT in lung cancer cells through the induction of ZEB1.

Keywords

Homeodomain Proteins, Epithelial-Mesenchymal Transition, Lung Neoplasms, Epithelial Cells, Adenocarcinoma, Protein Serine-Threonine Kinases, Cadherins, MicroRNAs, Cell Transformation, Neoplastic, AMP-Activated Protein Kinase Kinases, Cell Movement, Cell Line, Tumor, Gene Knockdown Techniques, Mutation, Humans, Neoplasm Invasiveness, RNA, Small Interfering, Cells, Cultured, Cell Line, Transformed, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%