Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Ligand-Dependent Activation of the Melanocortin 5 Receptor: cAMP Production and Ryanodine Receptor-Dependent Elevations of [Ca2+]i

cAMP production and ryanodine receptor-dependent elevations of [Ca2+]i
Authors: Hoogduijn, M. J.; McGurk, S.; Ancans, J.; Thody, A. J.; Smit, N. P.M.; Nibbering, P. H.; van der Laarse, A.;

Ligand-Dependent Activation of the Melanocortin 5 Receptor: cAMP Production and Ryanodine Receptor-Dependent Elevations of [Ca2+]i

Abstract

The melanocortins are involved in the regulation of various cognitive and physiological processes such as learning, feeding, immune suppression, pigmentation, and sebum production. Five melanocortin receptors have been identified, of which the melanocortin 5 receptor (MC5R) has the most widespread distribution. This subtype is found in the brain, and at numerous peripheral sites including the skin where it is expressed in the sebaceous glands. The purpose of this study was to identify the peptide that functions as a natural ligand at the MC5R in the skin. alpha-MSH, ACTH1-39, ACTH1-17, ACTH1-10, and ACTH4-10 all increased the production of cAMP in HEK293 cells transfected with the mouse MC5R. alpha-MSH and ACTH1-17 were the most potent in this respect. In addition, all peptides stimulated a rapid and transient increase in [Ca(2+)](i), and, ACTH1-10 was the most potent. The increases in [Ca(2+)](i) were of intracellular origin, but not associated with inositol phosphate production. The elevations in [Ca(2+)](i) were reduced by ruthenium red and procaine and it is therefore possible that they were mediated via ryanodine receptors.

Keywords

Intracellular Fluid, Inositol Phosphates, Receptors, Melanocortin, Ryanodine Receptor Calcium Release Channel, Kidney, Ligands, Ruthenium Red, Peptide Fragments, Cell Line, Mice, Adrenocorticotropic Hormone, Receptors, Corticotropin, Cyclic AMP, Animals, Humans, Calcium, Anesthetics, Local, Coloring Agents, Procaine, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%