The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes
pmid: 19653005
The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes
Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten 'endurance alleles' (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles they possessed. The proportion of subjects with a high (≥9) number of 'endurance' alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 × 10(-6)). The number of 'endurance' alleles was shown to be positively correlated (r = 0.50; P = 4.0 × 10(-4)) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 × 10(-4)). These data suggest that the likelihood of becoming an elite endurance athlete depends on the carriage of a high number of endurance-related alleles.
- Manchester Metropolitan University United Kingdom
- Russian Academy of Sciences Russian Federation
EXPRESSION, Male, EXERCISE, PGC-1-BETA, Young Adult, PPAR-ALPHA, Humans, Genetics & Heredity, 0604 Genetics, Science & Technology, Polymorphism, Genetic, MITOCHONDRIAL TRANSCRIPTION FACTOR, PROLIFERATOR-ACTIVATED-RECEPTOR, ASSOCIATION, PERFORMANCE, Phenotype, PROMOTER REGION, Athletes, Physical Endurance, SKELETAL-MUSCLE, 1114 Paediatrics and Reproductive Medicine, Female, 1104 Complementary and Alternative Medicine, Life Sciences & Biomedicine, Sports
EXPRESSION, Male, EXERCISE, PGC-1-BETA, Young Adult, PPAR-ALPHA, Humans, Genetics & Heredity, 0604 Genetics, Science & Technology, Polymorphism, Genetic, MITOCHONDRIAL TRANSCRIPTION FACTOR, PROLIFERATOR-ACTIVATED-RECEPTOR, ASSOCIATION, PERFORMANCE, Phenotype, PROMOTER REGION, Athletes, Physical Endurance, SKELETAL-MUSCLE, 1114 Paediatrics and Reproductive Medicine, Female, 1104 Complementary and Alternative Medicine, Life Sciences & Biomedicine, Sports
34 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).121 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
