Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Reproductive Biology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reproductive Biology and Endocrinology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

G6PC indicated poor prognosis in cervical cancer and promoted cervical carcinogenesis in vitro and in vivo

Authors: Kun Zhu; Chunling Deng; Pan Du; Taorui Liu; Junjie Piao; Yingshi Piao; Meng Yang; +1 Authors

G6PC indicated poor prognosis in cervical cancer and promoted cervical carcinogenesis in vitro and in vivo

Abstract

Abstract Background The glucose-6-phosphatase catalytic subunit (G6PC) is a key enzyme that is involved in gluconeogenesis and glycogen decomposition during glycometabolism. Studies have shown that G6PC is abnormally expressed in various cancers and participates in the proliferation and metastasis of tumors. However, the role of G6PC in cervical cancer remains poorly established. Methods To analyze the expression of G6PC in cervical cancer tissues in patients by immunohistochemistry. Effects of G6PC deregulation on cervical cancer phenotype were determined using MTT, colony formation, transwell, and wound-healing assays. And constructed a nude mouse xenograft tumor model and CAM assay in vivo. The effect of G6PC on glycolysis in cervical cancer was also evaluated. Effect of G6PC on PI3K/AKT/mTOR pathway was detected by Western blot assay. Results In this study, G6PC expression was found to be upregulated in cervical cancer tissues, and this upregulated expression was associated with LN metastasis, clinical stage, recurrence, and disease-free survival and overall survival rates, indicating that G6PC could serve as a novel marker of early diagnosis in cervical cancer. G6PC promoted proliferation, invasion, epithelial mesenchymal transition (EMT) progression, and angiogenesis of cervical cancer cells. Mechanistically, G6PC activated PI3K/AKT/mTOR pathways. The PI3K/AKT pathway inhibitor, LY294002 could partially attenuate the effect. Conclusions G6PC plays a key role in the progression of cervical cancer, and overexpressed G6PC is closely related to patient LN metastasis, clinical stage, recurrence and shortened survival. G6PC promoted cervical cancer proliferation, invasion, migration, EMT progression, and angiogenesis, partially through activating the PI3K/AKT pathway. G6PC, as a metabolic gene, not only plays a role in metabolism, but also participates in the development of cervical cancer. Its complex metabolic and non metabolic effects may be a potential therapeutic target and worthy of further study.

Related Organizations
Keywords

Adult, QH471-489, Carcinogenesis, Blotting, Western, Transplantation, Heterologous, Mice, Nude, Uterine Cervical Neoplasms, Mice, Cell Line, Tumor, Animals, Humans, Aged, Mice, Inbred BALB C, Reproduction, Research, EMT, Gynecology and obstetrics, Middle Aged, Prognosis, Immunohistochemistry, Up-Regulation, PI3K/AKT pathway, Gene Expression Regulation, Neoplastic, Cervical cancer, RG1-991, Glucose-6-Phosphatase, G6PC, Female, Angiogenesis, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
gold