Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioMetalsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioMetals
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
BioMetals
Article . 2010
versions View all 2 versions

Conservation of copper-transporting P(IB)-type ATPase function

Authors: Southon, Adam; Palstra, Nickless; Veldhuis, Nicholas; Gaeth, Ann; Robin, Charles; Burke, Richard; Camakaris, James;

Conservation of copper-transporting P(IB)-type ATPase function

Abstract

Copper-transporting P(IB)-type ATPases are highly conserved, and while unicellular eukaryotes and invertebrates have only one, a gene duplication has occurred during vertebrate evolution. Copper-induced trafficking of mammalian ATP7A and ATP7B from the trans-Golgi Network towards the plasma membrane is critical for their role in copper homeostasis. In polarized epithelial cells ATP7A and ATP7B traffic towards the basolateral and apical membranes respectively. We examined the localization and function of DmATP7, the single Drosophila melanogaster orthologue, in cultured D. melanogaster and mammalian cells to explore the conservation of P(IB)-type ATPase function. Comparative genomic analysis demonstrated motifs involved in basolateral targeting and retention of ATP7A were conserved in DmATP7, whereas ATP7B targeting motifs were not. DmATP7 expression was able to correct the copper hyper-accumulation phenotype of cultured fibroblasts from a Menkes disease patient expressing a null ATP7A allele. DmATP7 was able to transport copper to the cupro-enzyme tyrosinase and under elevated copper conditions DmATP7 was able to traffic towards the plasma membrane and efflux copper, essentially phenocopying ATP7A. When expressed in polarized Madin-Darby Canine Kidney cells, DmATP7 translocated towards the basolateral membrane when exposed to elevated copper, similar to ATP7A. These results demonstrate DmATP7 is able to functionally compensate for the absence of ATP7A, with important trafficking motifs conserved in these distantly related orthologues.

Keywords

Adenosine Triphosphatases, Monophenol Monooxygenase, Wilson, Biological Transport, Dogs, Drosophila melanogaster, Menkes, DmATP7, Copper-Transporting ATPases, Animals, Humans, Menkes Kinky Hair Syndrome, Cation Transport Proteins, Cells, Cultured, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%