Circadian CLOCK-Mediated Regulation of Target-Tissue Sensitivity to Glucocorticoids: Implications for Cardiometabolic Diseases
Circadian CLOCK-Mediated Regulation of Target-Tissue Sensitivity to Glucocorticoids: Implications for Cardiometabolic Diseases
Glucocorticoids, the end-products of the hypothalamic-pituitary- adrenal (HPA) axis, influence the functions of virtually all organs and tissues through the nuclear glucocorticoid receptor (GR). Circulating levels of glucocorticoids fluctuate naturally in a circadian fashion under the strong influence of the hypothalamic suprachiasmatic nucleus (SCN) circadian CLOCK system, and regulate the transcriptional activity of the GR in the brain and peripheral target tissues. We recently reported that the basic helix-loop- helix transcription factor Clock, which is a histone acetyltransferase and a central component of the self-oscillating transcription factor loop that generates circadian rhythms, represses GR transcriptional activity by acetylating lysine residues within the 'lysine cluster' located in the hinge region of the receptor. This Clock-mediated repression of GR transcriptional activity oscillates in inverse phase to the HPA axis, acting as a target tissue counter-regulatory mechanism to the diurnally fluctuating circulating glucocorticoids. Interestingly, mild evening elevations of corti-sol, as occurs in chronic stress situations, and frequent uncoupling of the SCN CLOCK-directed HPA axis from the daily oscillation of target tissue sensitivity to glucocorticoids, as happens in trans-time zone travel and night shift work, produce functional hypercortisolism and, hence, multiple components of the metabolic syndrome with resultant cardiovascular complications.
- National and Kapodistrian University of Athens Greece
- National Institute of Health Pakistan
- National Institutes of Health United States
Drug Resistance, CLOCK Proteins, Models, Biological, Circadian Rhythm, Metabolic Diseases, Cardiovascular Diseases, Organ Specificity, Animals, Humans, Glucocorticoids
Drug Resistance, CLOCK Proteins, Models, Biological, Circadian Rhythm, Metabolic Diseases, Cardiovascular Diseases, Organ Specificity, Animals, Humans, Glucocorticoids
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
