Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Biochemistry ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Insect Biochemistry and Molecular Biology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster

Authors: Seeta, Poudel; Yunjung, Kim; Yun Tai, Kim; Youngseok, Lee;

Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster

Abstract

Studies of taste modality using the animal model Drosophila melanogaster have elucidated a number of uncharacterized mechanisms of sensory responses. Gustatory receptors expressed in taste organs are not only responsible for the acceptance and rejection of different foods, but are also involved in the process of selecting an oviposition site. This contact-chemosensation is essential for animals to discriminate between nutritious and contaminated foods. In this study, we characterized the function of gustatory receptors that play a dual role in feeding and oviposition using the plant metabolite umbelliferone. The combined electrophysiological and behavioral evidence demonstrated that two broadly tuned gustatory receptors, GR33a and GR66a, and one narrowly tuned gustatory receptor, GR93a, are all required to generate a functional umbelliferone receptor.

Related Organizations
Keywords

Drosophila melanogaster, Oviposition, Taste, Animals, Drosophila Proteins, Female, Receptors, Cell Surface, Umbelliferones, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%