Evolved, Selective Erasers of Distinct Lysine Acylations
Evolved, Selective Erasers of Distinct Lysine Acylations
Abstract Lysine acylations, a family of diverse protein modifications varying in acyl‐group length, charge, and saturation, are linked to many important physiological processes. Only a small set of substrate‐promiscuous lysine acetyltransferases and deacetylases (KDACs) install and remove this vast variety of modifications. Engineered KDACs that remove only one type of acylation would help to dissect the different contributions of distinct acylations. We developed a bacterial selection system for the directed evolution of KDACs and identified variants up to 400 times more selective for butyryl‐lysine compared to crotonyl‐lysine. Structural analyses revealed that the enzyme adopts different conformational states depending on the type of acylation of the bound peptide. We used the butyryl‐selective KDAC variant to shift the cellular acylation spectrum towards increased lysine crotonylation. These new enzymes will help in dissecting the roles of different lysine acylations in cell physiology.
Acylation, Lysine, Lysine Acetyltransferases, Research Articles
Acylation, Lysine, Lysine Acetyltransferases, Research Articles
22 Research products, page 1 of 3
- 2019IsSupplementTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
