Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oncogenearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2005
versions View all 2 versions

Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells

Authors: Florence, Armstrong; Marie-Michèle, Duplantier; Pascal, Trempat; Corinne, Hieblot; Laurence, Lamant; Estelle, Espinos; Claire, Racaud-Sultan; +4 Authors

Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells

Abstract

Majority of anaplastic large-cell lymphomas (ALCLs) are associated with the t(2;5)(p23;q35) translocation, fusing the NPM (nucleophosmin) and ALK (anaplastic lymphoma kinase) genes (NPM-ALK). Recent studies demonstrated that ALK may also be involved in variant translocations, namely, t(1;2)(q25;p23), t(2;3)(p23;q21), t(2;17)(p23;q23) and inv(2)(p23q35), which create the TPM3-ALK, TFG-ALK5, CLTC-ALK, and ATIC-ALK fusion genes, respectively. Although overexpression of NPM-ALK has previously been shown to transform fibroblasts, the transforming potential of variant X-ALK proteins has not been precisely investigated. We stably transfected the cDNAs coding for NPM-ALK, TPM3-ALK, TFG-ALK, CLTC-ALK or ATIC-ALK into nonmalignant NIH3T3 cells. All X-ALK variants are tyrosine phosphorylated and their subcellular distribution was in agreement with that observed in tumors. Moreover, our results show that the in vitro transforming capacity of NIH3T3-transfected cells are in relation to the level of X-ALK fusion proteins excepted for TPM3-ALK for which there is an inverse correlation. The differences between the five X-ALK variants with regard to proliferation rate, colony formation in soft agar, invasion, migration through the endothelial barrier and tumorigenicity seem to be due to differential activation of various signaling pathways such as PI3-kinase/AKT. These findings may have clinical implications in the pathogenesis and prognosis of ALK-positive ALCLs.

Keywords

Recombinant Fusion Proteins, Mice, Nude, Receptor Protein-Tyrosine Kinases, Neoplasms, Experimental, Protein-Tyrosine Kinases, Transfection, Cell Line, Mice, Cell Transformation, Neoplastic, Cell Movement, NIH 3T3 Cells, Animals, Humans, Anaplastic Lymphoma Kinase, Neoplasm Invasiveness, Cell Division, Cell Line, Transformed, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 1%
Top 10%