Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Pit-1 and GATA-2 Interact and Functionally Cooperate to Activate the Thyrotropin β-Subunit Promoter

Authors: Bryan R. Haugen; William M. Wood; Suzanne R. Lewis; E. Chester Ridgway; Michael T. McDermott; R. Andrew James; David F. Gordon;

Pit-1 and GATA-2 Interact and Functionally Cooperate to Activate the Thyrotropin β-Subunit Promoter

Abstract

The molecular determinants governing cell-specific expression of the thyrotropin (TSH) beta-subunit gene in pituitary thyrotropes are not well understood. The P1 region of the mouse TSHbeta promoter (-133 to -88) region interacts with Pit-1 and an additional 50-kDa factor at an adjacent site that resembles a consensus GATA binding site. Northern and Western blot assays demonstrated the presence of GATA-2 transcripts and protein in TtT-97 thyrotropic tumors. In electrophoretic mobility shift assays, a comigrating complex was observed with both TtT-97 nuclear extracts and GATA-2 expressed in COS cells. The complex demonstrated binding specificity to the P1 region DNA probe and could be disrupted by a GATA-2 antibody. When both Pit-1 and GATA-2 were combined, a slower migrating complex, indicative of a ternary protein-DNA interaction was observed. Cotransfection of both Pit-1 and GATA-2 into CV-1 cells synergistically stimulated mouse TSHbeta promoter activity 8.5-fold, while each factor alone had a minimal effect. Mutations that abrogated this functional stimulatory effect mapped to the P1 region. Finally, we show that GATA-2 directly interacts with Pit-1 in solution. In summary, these data demonstrate functional synergy and physical interaction between homeobox and zinc finger factors and provide insights into the transcriptional mechanisms of thyrotrope-specific gene expression.

Keywords

Thyrotropin, DNA-Binding Proteins, GATA2 Transcription Factor, Mice, Gene Expression Regulation, Tumor Cells, Cultured, Animals, RNA, Messenger, Promoter Regions, Genetic, Transcription Factor Pit-1, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 10%
gold