Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2006 . Peer-reviewed
Data sources: Crossref
Development
Article . 2006
versions View all 2 versions

Isl1Cre reveals a common Bmp pathway in heart and limb development

Authors: Lei, Yang; Chen-Leng, Cai; Lizhu, Lin; Yibing, Qyang; Christine, Chung; Rui M, Monteiro; Christine L, Mummery; +3 Authors

Isl1Cre reveals a common Bmp pathway in heart and limb development

Abstract

A number of human congenital disorders present with both heart and limb defects, consistent with common genetic pathways. We have recently shown that the LIM homeodomain transcription factor islet 1 (Isl1) marks a subset of cardiac progenitors. Here, we perform lineage studies with an Isl1Cre mouse line to demonstrate that Isl1 also marks a subset of limb progenitors. In both cardiac and limb progenitors, Isl1 expression is downregulated as progenitors migrate in to form either heart or limb. To investigate common heart-limb pathways in Isl1-expressing progenitors, we ablated the Type I Bmp receptor,Bmpr1a utilizing Isl1Cre/+. Analysis of consequent heart and limb phenotypes has revealed novel requirements for Bmp signaling. Additionally, we find that Bmp signaling in Isl1-expressing progenitors is required for expression of T-box transcription factors Tbx2 and Tbx3 in heart and limb. Tbx3 is required for heart and limb formation, and is mutated in ulnar-mammary syndrome. We provide evidence that the Tbx3 promoter is directly regulated by Bmp Smads in vivo.

Keywords

Heart Defects, Congenital, Homeodomain Proteins, Mice, Knockout, Base Sequence, LIM-Homeodomain Proteins, Molecular Sequence Data, Down-Regulation, Extremities, Heart, Nerve Tissue Proteins, Mice, Mutant Strains, Mice, Phenotype, Bone Morphogenetic Proteins, Animals, Promoter Regions, Genetic, T-Box Domain Proteins, Bone Morphogenetic Protein Receptors, Type I, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    236
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
236
Top 1%
Top 1%
Top 1%
bronze