The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae
pmid: 9878809
The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae
Glycosylation constitutes one of the most important of all the post-translational modifications and may have numerous effects on the function, structure, physical properties and targeting of particular proteins. Eukaryotic glycan structures are progressively elaborated in the secretory pathway. Following the addition of a core N-linked carbohydrate in the endoplasmic reticulum, glycoproteins move to the Golgi complex where the elongation of O-linked sugar chains and processing of complex N-linked oligosaccharide structures take place. In order to better define how such post-translational modifications occur, we have been studying the yeast KTR and MNN1 mannosyltransferase gene families. The KTR family contains nine members: KRE2, YUR1, KTR1, KTR2, KTR3, KTR4, KTR5, KTR6 and KTR7. The MNN1 family contains six members: MNN1, TTP1, YGL257c, YNR059w, YIL014w and YJL86w. In this review, we address protein structure, sequence similarities and enzymatic activity in the context of each gene family. In addition, a description of the known function of many family members in O- and N-linked glycosylation is included. Finally, the genetic interactions and functional redundancies within a gene family are also discussed.
- McGill University Canada
Glycosylation, Membrane Glycoproteins, Saccharomyces cerevisiae Proteins, Nitrogen, Molecular Sequence Data, Saccharomyces cerevisiae, Mannosyltransferases, Fungal Proteins, Oxygen, Amino Acid Sequence, Glycoproteins
Glycosylation, Membrane Glycoproteins, Saccharomyces cerevisiae Proteins, Nitrogen, Molecular Sequence Data, Saccharomyces cerevisiae, Mannosyltransferases, Fungal Proteins, Oxygen, Amino Acid Sequence, Glycoproteins
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).126 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
