Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimica et Biophy...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - General Subjects
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae

Authors: M, Lussier; A M, Sdicu; H, Bussey;

The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae

Abstract

Glycosylation constitutes one of the most important of all the post-translational modifications and may have numerous effects on the function, structure, physical properties and targeting of particular proteins. Eukaryotic glycan structures are progressively elaborated in the secretory pathway. Following the addition of a core N-linked carbohydrate in the endoplasmic reticulum, glycoproteins move to the Golgi complex where the elongation of O-linked sugar chains and processing of complex N-linked oligosaccharide structures take place. In order to better define how such post-translational modifications occur, we have been studying the yeast KTR and MNN1 mannosyltransferase gene families. The KTR family contains nine members: KRE2, YUR1, KTR1, KTR2, KTR3, KTR4, KTR5, KTR6 and KTR7. The MNN1 family contains six members: MNN1, TTP1, YGL257c, YNR059w, YIL014w and YJL86w. In this review, we address protein structure, sequence similarities and enzymatic activity in the context of each gene family. In addition, a description of the known function of many family members in O- and N-linked glycosylation is included. Finally, the genetic interactions and functional redundancies within a gene family are also discussed.

Related Organizations
Keywords

Glycosylation, Membrane Glycoproteins, Saccharomyces cerevisiae Proteins, Nitrogen, Molecular Sequence Data, Saccharomyces cerevisiae, Mannosyltransferases, Fungal Proteins, Oxygen, Amino Acid Sequence, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 10%