Osteoclastogenesis in Children with 21-Hydroxylase Deficiency on Long-Term Glucocorticoid Therapy: The Role of Receptor Activator of Nuclear Factor-κB Ligand/Osteoprotegerin Imbalance
Osteoclastogenesis in Children with 21-Hydroxylase Deficiency on Long-Term Glucocorticoid Therapy: The Role of Receptor Activator of Nuclear Factor-κB Ligand/Osteoprotegerin Imbalance
Children with 21-hydroxylase deficiency (21-OHD) need chronic glucocorticoid (cGC) therapy to replace congenital deficit of cortisol synthesis. cGC therapy is the most frequent and severe form of drug-induced osteoporosis, and different mechanisms have been proposed to explain its pathogenesis.We investigated the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) from 18 children with 21-OHD on cGC therapy and 25 controls who never received GCs. We also evaluated the presence of circulating osteoclast precursors (OCPs) and the role of T cells in osteoclast formation.Spontaneous osteoclastogenesis, without adding macrophage-colony stimulating factor and receptor activator of nuclear factor-kappaB ligand (RANKL), and significantly higher osteoclasts resorption activity occurred in 21-OHD patients. Conversely, macrophage-colony stimulating factor and RANKL were essential to trigger and sustain osteoclastogenesis in controls. Furthermore, in 21-OHD patients, we identified a significant percentage of CD11b-CD51/CD61 and CD51/61-RANK-positive cells, which are OCPs strongly committed. Additionally, we demonstrated a T cell-dependent osteoclastogenesis from 21-OHD patients' PBMCs. T cells from patients expressed high levels of RANKL and low levels of osteoprotegerin (OPG) with respect to controls. Moreover, 21-OHD patients had higher soluble RANKL and lower OPG serum levels compared with controls; thus, soluble RANKL to OPG ratio was significantly higher in patients than controls.The present study showed for the first time a high osteoclastogenic potential of PBMCs from 21-OHD patients on cGC therapy. This spontaneous osteoclastogenesis seems to be supported by both the presence of circulating OCPs and factors released by T cells.
Male, Time Factors, Adolescent, Adrenal Hyperplasia, Congenital, T-Lymphocytes, RANK Ligand, Osteoprotegerin, Osteoclasts, Cell Differentiation, Case-Control Studies, Child, Preschool, Humans, Female, Child, Glucocorticoids, Cells, Cultured
Male, Time Factors, Adolescent, Adrenal Hyperplasia, Congenital, T-Lymphocytes, RANK Ligand, Osteoprotegerin, Osteoclasts, Cell Differentiation, Case-Control Studies, Child, Preschool, Humans, Female, Child, Glucocorticoids, Cells, Cultured
4 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
