Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2001
versions View all 2 versions

Quantitative autoradiographic mapping of the ORL1, μ-, δ- and κ-receptors in the brains of knockout mice lacking the ORL1 receptor gene

Authors: S, Clarke; Z, Chen; M S, Hsu; J, Pintar; R, Hill; I, Kitchen;

Quantitative autoradiographic mapping of the ORL1, μ-, δ- and κ-receptors in the brains of knockout mice lacking the ORL1 receptor gene

Abstract

Until recently the opioid receptor family was thought to consist of only the mu-, delta- and kappa-receptors. The cloning of opioid receptor like receptor (ORL1) and its endogenous ligand nociceptin/orphanin FQ, which displayed anti-opioid properties, has raised the issue of functional co-operativity of this system with the classical opioid system. ORL1 receptor knockout mice have been successfully developed by homologous recombination to allow the issue of potential heterogeneity of this receptor and also of compensatory changes in mu-, delta- or kappa-receptors in the absence of ORL1 to be addressed. We have carried out quantitative autoradiographic mapping of these receptors in the brains of mice that are wild-type, heterozygous and homozygous for the deletion of the ORL1 receptor. ORL1, mu-, delta- and kappa-receptors were labelled with [(3)H] leucyl-nociceptin (0.4 nM), [(3)H] DAMGO (4 nM), [(3)H] deltorphin-I (7 nM), and [(3)H] CI-977 (2.5 nM) respectively. An approximately 50% decrease in [(3)H] leucyl-nociceptin binding was seen in heterozygous ORL1 mutant mice and there was a complete absence of binding in homozygous brains indicating the single gene encodes for the ORL1 receptor and any putative subtypes. No significant gross changes in the binding to other opioid receptors were seen across genotypes in the ORL1 mutant mice demonstrating a lack of major compensation of classical opioid receptors in the absence of ORL1. There were a small number of region specific changes in the expression of classical opioid receptors that may relate to interdependent function with ORL1.

Related Organizations
Keywords

Mice, Knockout, Neurons, Binding Sites, Pyrrolidines, Receptors, Opioid, kappa, Receptors, Opioid, mu, Brain, Enkephalin, Ala(2)-MePhe(4)-Gly(5)-, Analgesics, Opioid, Mice, Radioligand Assay, Neuroprotective Agents, Opioid Peptides, Receptors, Opioid, delta, Receptors, Opioid, Animals, Autoradiography, Oligopeptides, Gene Deletion, Benzofurans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%