Scanning the Cystic Fibrosis Transmembrane Conductance Regulator Gene Using High-Resolution DNA Melting Analysis
pmid: 17890437
Scanning the Cystic Fibrosis Transmembrane Conductance Regulator Gene Using High-Resolution DNA Melting Analysis
Abstract Background: Complete gene analysis of the cystic fibrosis transmembrane conductance regulator gene (CFTR) by scanning and/or sequencing is seldom performed because of the cost, time, and labor involved. High-resolution DNA melting analysis is a rapid, closed-tube alternative for gene scanning and genotyping. Methods: The 27 exons of CFTR were amplified in 37 PCR products under identical conditions. Common variants in 96 blood donors were identified in each exon by high-resolution melting on a LightScanner®. We then performed a subsequent blinded study on 30 samples enriched for disease-causing variants, including all 23 variants recommended by the American College of Medical Genetics and 8 additional, well-characterized variants. Results: We identified 22 different sequence variants in 96 blood donors, including 4 novel variants and the disease-causing p.F508del. In the blinded study, all 40 disease-causing heterozygotes (29 unique) were detected, including 1 new probable disease-causing variant (c.3500-2A>T). The number of false-positive amplicons was decreased 96% by considering the 6 most common heterozygotes. The melting patterns of most heterozygotes were unique (37 of 40 pairs within the same amplicon), the exceptions being p.F508del vs p.I507del, p.G551D vs p.R553X, and p.W1282X vs c.4002A>G. The homozygotes p.G542X, c.2789 + 5G>A, and c.3849 + 10kbC>T were directly identified, but homozygous p.F508del was not. Specific genotyping of these exceptions, as well as genotyping of the 5T allele of intron 8, was achieved by unlabeled-probe and small-amplicon melting assays. Conclusions: High-resolution DNA melting methods provide a rapid and accurate alternative for complete CFTR analysis. False positives can be decreased by considering the melting profiles of common variants.
- ARUP Institute for Clinical and Experimental Pathology United States
- ARUP Laboratories (United States) United States
- University of Utah United States
- Huntsman Cancer Institute United States
- University of Utah Health Care United States
Heterozygote, Cystic Fibrosis, Genotype, Cystic Fibrosis Transmembrane Conductance Regulator, Genetic Variation, Blood Donors, DNA, Exons, Sequence Analysis, DNA, Polymerase Chain Reaction, Humans, Transition Temperature
Heterozygote, Cystic Fibrosis, Genotype, Cystic Fibrosis Transmembrane Conductance Regulator, Genetic Variation, Blood Donors, DNA, Exons, Sequence Analysis, DNA, Polymerase Chain Reaction, Humans, Transition Temperature
64 Research products, page 1 of 7
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
