Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The helix-loop-helix proteins dAP-4 and daughterless bind both in vitro and in vivo to SEBP3 sites required for transcriptional activation of the Drosophila gene Sgs-4

Authors: K, King-Jones; G, Korge; M, Lehmann;

The helix-loop-helix proteins dAP-4 and daughterless bind both in vitro and in vivo to SEBP3 sites required for transcriptional activation of the Drosophila gene Sgs-4

Abstract

The expression of Sgs genes in the salivary gland of the third instar larva of Drosophila is a spatially restricted response to signalling by the steroid hormone 20-hydroxyecdysone. For Sgs-4, we have previously demonstrated that its strictly tissue and stage-specific expression is the result of combined action of the ecdysone receptor and secretion enhancer binding proteins (SEBPs). One of these SEBPs, SEBP2, was shown to be the product of the homeotic gene fork head. Together with SEBP3, SEBP2 appears to be responsible for the spatial restriction of the hormone response of Sgs-4. Here, we show that SEBP3 is a heterogeneous binding activity that consists of different helix-loop-helix (HLH) proteins. We cloned the Drosophila homologue of human transcription factor AP-4 (dAP-4) and identified it as one of these HLH proteins. The dAP-4 protein shows great similarity to its human and Caenorhabditis counterparts within the bHLHZip domain, the second leucine zipper dimerization motif, and a third region of unknown function. The expression pattern of dAP-4 indicates that it is a ubiquitously expressed HLH protein in Drosophila. As a second component of SEBP3 we identified the Daughterless (Da) protein, which is also ubiquitously expressed and binds to SEBP3 sites independent of dAP-4. Since both dAP-4 and Da can be detected in situ at transposed Sgs-4 transcriptional control elements in polytene salivary gland chromosomes, we propose that each of the two proteins contributes to the transcriptional control of Sgs-4.

Related Organizations
Keywords

Homeodomain Proteins, Binding Sites, Protein Conformation, Glue Proteins, Drosophila, Helix-Loop-Helix Motifs, Microfilament Proteins, Molecular Sequence Data, Nuclear Proteins, Forkhead Transcription Factors, Regulatory Sequences, Nucleic Acid, DNA-Binding Proteins, Drosophila melanogaster, Gene Expression Regulation, Basic Helix-Loop-Helix Transcription Factors, DNA Transposable Elements, Animals, Drosophila Proteins, Humans, Insect Proteins, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%