Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurogenetics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurogenetics
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurogenetics
Article . 2006
versions View all 6 versions

Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

Authors: Maria Colombo; Nereo Bresolin; Vincenzo Barrese; Renato Borgatti; Francesco Miceli; Maurizio Taglialatela; Maurizio Taglialatela; +6 Authors

Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

Abstract

Benign familial neonatal convulsion (BFNC) is a rare autosomal dominant disorder caused by mutations in KCNQ2 and KCNQ3, two genes encoding for potassium channel subunits. A large family with nine members affected by BFNC is described in the present study. All affected members of this family carry a novel deletion/insertion mutation in the KCNQ2 gene (c.761_770del10insA), which determines a premature truncation of the protein. In addition, in the family of the proposita's father, a novel sequence variant (c.2687A>G) in KCNQ3 leading to the p.N821S amino acid change was detected. When heterologously expressed in Chinese hamster ovary cells, KCNQ2 subunits carrying the mutation failed to form functional potassium channels in homomeric configuration and did not affect channels formed by KCNQ2 and/or KCNQ3 subunits. On the other hand, homomeric and heteromeric potassium channels formed by KCNQ3 subunits carrying the p.N821S variant were indistinguishable from those formed by wild-type KCNQ3 subunits. Finally, the current density of the cells mimicking the double heterozygotic condition for both KCNQ2 and KCNQ3 alleles of the proband was decreased by approximately 25% when compared to cells expressing only wild-type alleles. Collectively, these results suggest that, in the family investigated, the KCNQ2 mutation is responsible for the BFNC phenotype, possibly because of haplo-insufficiency, whereas the KCNQ3 variant is functionally silent, a result compatible with its lack of segregation with the BFNC phenotype.

Keywords

Male, Gene variant, Benign Neonatal, Molecular Sequence Data, 610, CHO Cells, Benign familial neonatal convulsion; Epilepsy; Gene variant; KCNQ2; KCNQ3, KCNQ3 Potassium Channel, Cricetinae, Animals, Humans, KCNQ2 Potassium Channel, Genetics (clinical), KCNQ2, Family Health, KCNQ3, Epilepsy, Neuroscience (all), Base Sequence, Genetic Variation, Benign familial neonatal convulsion; Epilepsy; Gene variant; KCNQ2; KCNQ3; Animals; Base Sequence; CHO Cells; Cricetinae; Epilepsy, Benign Neonatal; Family Health; Female; Humans; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Male; Molecular Sequence Data; Mutation; Pedigree; Genetic Variation; Genetics (clinical); Neuroscience (all), 540, Epilepsy, Benign Neonatal, Pedigree, Mutation, Epilepsy - Benign familial neonatal convulsion - KCNQ2 - KCNQ3 - Gene variant, Female, Benign familial neonatal convulsion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
Green
bronze