Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Biology
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Biology
Article . 2009
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Biology
Article . 2009
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2009
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.plosbiology.org/art...
Article . 2009 . Peer-reviewed
Data sources: SNSF P3 Database
ETH Zürich Research Collection
Article . 2009
License: CC BY
Data sources: Datacite
versions View all 9 versions

Base Excision by Thymine DNA Glycosylase Mediates DNA-Directed Cytotoxicity of 5-Fluorouracil

Authors: Selfridge J.; Schar P.; Lettieri T.; Schuermann D.; Saito Y.; Focke F.; Kunz C.;

Base Excision by Thymine DNA Glycosylase Mediates DNA-Directed Cytotoxicity of 5-Fluorouracil

Abstract

5-Fluorouracil (5-FU) has been used in clinical cancer therapy for more than four decades. Despite a moderate response rate and a high propensity of tumors to develop resistance to the drug, 5-FU remains a mainstay in the first-line treatment of colorectal cancer in particular. But precisely how 5-FU kills cancerous cells is not well understood. It is known, for example, that 5-FU affects RNA or DNA metabolism. Its DNA-directed cytotoxicity is thought to be based on extensive misincorporation of uracil and 5-FU into cellular DNA, and it has been proposed that the excision of these bases by uracil DNA glycosylases (UDGs) results in destructive DNA fragmentation, which can ultimately lead to cell death. However, the UDG responsible has not been identified. We now show that inactivation of only one of four mammalian UDGs, the thymine DNA glycosylase (TDG) in mouse and human cells is sufficient to confer resistance to 5-FU, whereas overexpression of TDG sensitizes cells to the drug. We provide further experimental evidence to show that excision of 5-FU from DNA by TDG, but not by other UDGs, inhibits efficient downstream processing of the lesion. This leads to an accumulation of DNA repair intermediates, which induce DNA damage signaling and, eventually, cell death. Thus, TDG activity in cells represents an important determinant of the DNA-directed cytotoxicity of 5-FU, an observation that might help us to understand the variable response to 5-FU treatments in cancer.

PLoS Biology, 7 (4)

ISSN:1544-9173

ISSN:1545-7885

Keywords

cancer cell-lines; thymidylate synthase; repair enzyme; damage response; n-glycosylase; comet assay; med1 mbd4; s-phase; uracil; mechanism, Antimetabolites, Antineoplastic, cancer cell-lines, DNA Repair, QH301-705.5, repair enzyme, Neuroscience(all), mechanism, thymidylate synthase, DNA Glycosylases, /dk/atira/pure/subjectarea/asjc/1300, Mice, comet assay, Immunology and Microbiology(all), Cell Line, Tumor, Neoplasms, /dk/atira/pure/subjectarea/asjc/1100, Animals, uracil, n-glycosylase, s-phase, Biology (General), Uracil-DNA Glycosidase, damage response, Agricultural and Biological Sciences(all), Cell Death, Biochemistry, Genetics and Molecular Biology(all), Cell Cycle, med1 mbd4, Thymine DNA Glycosylase, /dk/atira/pure/subjectarea/asjc/2400, Fluorouracil, /dk/atira/pure/subjectarea/asjc/2800, Research Article, DNA Damage, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 1%
Green
gold