Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2009
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biotechnology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron

Authors: Zientara, K.; Wawrzynska, A.; Lukomska, J.; Lopez Moya, J.R.; Liszewska, F.; Assuncao, A.G.L.; Aarts, M.G.M.; +1 Authors

Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron

Abstract

Characterization of the function, regulation and metal-specificity of metal transporters is one of the basic steps needed for the understanding of transport and accumulation of toxic metals and metalloids by plants. In this work GUS was used as a reporter for monitoring the activity of the promoter of the AtMRP3 gene from Arabidopsis thaliana, a gene encoding an ABC-transporter, expression of which is induced by heavy metals. The AtMRP3 promoter-GUS fusion expression cassette was introduced into the genome of two model plants, A. thaliana and Nicotiana tabacum. The promoter induces GUS activity in the roots as well as in the shoots upon metal exposure. Similar responses of the AtMRP3 promoter to the presence of the selected metals was observed in both plant species. Cadmium, nickel, arsenic, cobalt and lead strongly activated the transcription of the reporter gene, while zinc and iron had no impact. The AtMRP3 promoter thus seems to be a useful new tool in designing plants that can be used for biomonitoring of environmental contaminations.

Keywords

Nicotiana, Arabidopsis Proteins, transformation, Arabidopsis, lignin, Plants, Genetically Modified, expression differences, Arsenic, Metals, Heavy, hyperaccumulator thlaspi-caerulescens, glutathione, Multidrug Resistance-Associated Proteins, genes, Promoter Regions, Genetic, abc transporters, Glucuronidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%