Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Immuno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Immunology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The CD40-CD40L axis and IFN- play critical roles in Langhans giant cell formation

Authors: Hidemasa, Sakai; Ikuo, Okafuji; Ryuta, Nishikomori; Junya, Abe; Kazushi, Izawa; Naotomo, Kambe; Takahiro, Yasumi; +2 Authors

The CD40-CD40L axis and IFN- play critical roles in Langhans giant cell formation

Abstract

The presence of Langhans giant cells (LGCs) is one of the signatures of systemic granulomatous disorders such as tuberculosis and sarcoidosis. However, the pathophysiological mechanism leading to LGC formation, especially the contribution of the T cells abundantly found in granulomas, has not been fully elucidated. To examine the role of T cells in LGC formation, a new in vitro method for the induction of LGCs was developed by co-culturing human monocytes with autologous T cells in the presence of concanavalin A (ConA). This system required close contact between monocytes and T cells, and CD4+ T cells were more potent than CD8+ T cells in inducing LGC formation. Antibody inhibition revealed that a CD40-CD40 ligand (CD40L) interaction and IFN-γ were essential for LGC formation, and the combination of exogenous soluble CD40L (sCD40L) and IFN-γ efficiently replaced the role of T cells. Dendritic cell-specific transmembrane protein (DC-STAMP), a known fusion-related molecule in monocytes, was up-regulated during LGC formation. Moreover, knock-down of DC-STAMP by siRNA inhibited LGC formation, revealing that DC-STAMP was directly involved in LGC formation. Taken together, these results demonstrate that T cells played a pivotal role in a new in vitro LGC formation system, in which DC-STAMP was involved, and occurred via a molecular mechanism that involved CD40-CD40L interaction and IFN-γ secretion.

Related Organizations
Keywords

CD4-Positive T-Lymphocytes, Blotting, Western, CD40 Ligand, Membrane Proteins, CD8-Positive T-Lymphocytes, Immunohistochemistry, Interleukin-12, Coculture Techniques, Monocytes, Recombinant Proteins, Interferon-gamma, Giant Cells, Langhans, Concanavalin A, Humans, RNA Interference, CD40 Antigens, Enzyme Inhibitors, Mitogen-Activated Protein Kinases, Cells, Cultured, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze