Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Conservation of Bmp2 Post-transcriptional Regulatory Mechanisms

Authors: Junwang Xu; David T. Fritz; Shan Jiang; Melissa B. Rogers; Donglin Liu;

Conservation of Bmp2 Post-transcriptional Regulatory Mechanisms

Abstract

Bone morphogenetic protein (BMP) orthologs from diverse species like flies and humans are functionally interchangeable and play key roles in fundamental processes such as dorso-ventral axis formation in metazoans. Because both transcriptional and post-transcriptional mechanisms play central roles in modulating developmental protein levels, we have analyzed the 3'-untranslated region (3'UTR) of the Bmp 2 gene. This 3'UTR is unusually long and is alternatively polyadenylated. Mouse, human, and dog mRNAs are 83-87% identical within this region. A 265-nucleotide sequence, conserved between mammals, birds, frogs, and fish, is present in Bmp2 but not Bmp4. The ability of AmphiBMP2/4, a chordate ortholog to Bmp2 and Bmp4, to align with this sequence suggests that its function may have been lost in Bmp4. Activation of reporter genes by the conserved region acts by a post-transcriptional mechanism. Mouse, human, chick, and zebrafish Bmp2 synthetic RNAs decay rapidly in extracts from cells not expressing Bmp2. In contrast, these RNAs are relatively stable in extracts from Bmp2-expressing cells. Thus, Bmp2 RNA half-lives in vitro correlate with natural Bmp2 mRNA levels. The fact that non-murine RNAs interact appropriately with the mouse decay machinery suggests that the function of these cis-regulatory regions has been conserved for 450 million years since the fish and tetrapod lineages diverged. Overall, our results suggest that the Bmp2 3'UTR contains essential regulatory elements that act post-transcriptionally.

Keywords

Calcium Phosphates, Expressed Sequence Tags, Base Sequence, Molecular Sequence Data, Bone Morphogenetic Protein 2, Cell Differentiation, Cell Line, Evolution, Molecular, Mice, Dogs, Genes, Reporter, Cell Line, Tumor, Cricetinae, Bone Morphogenetic Proteins, Animals, Humans, Cloning, Molecular, Luciferases, 3' Untranslated Regions, Chickens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
gold