<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Dosage compensation: the beginning and end of generalization
doi: 10.1038/nrg2013
pmid: 17173057
Dosage compensation: the beginning and end of generalization
The genomes of higher eukaryotes are carefully balanced systems of gene expression that compensate for the different numbers of sex chromosomes in the two sexes by adjusting gene expression levels. Different strategies for sex chromosome dosage compensation have evolved, which all involve modulating chromatin structure as a means to fine-tune transcription levels. As data accumulate, previous over-simplifications are being revised, and novel features of the compensation processes are gaining attention, many of which are of sufficient global validity to influence our view on gene expression beyond the realm of dosage compensation itself.
Male, Sex Chromosomes, Models, Genetic, Gene Expression, Chromosome Painting, Epigenesis, Genetic, Drosophila melanogaster, X Chromosome Inactivation, Chromosomal Instability, Dosage Compensation, Genetic, Animals, Humans, Female, Caenorhabditis elegans
Male, Sex Chromosomes, Models, Genetic, Gene Expression, Chromosome Painting, Epigenesis, Genetic, Drosophila melanogaster, X Chromosome Inactivation, Chromosomal Instability, Dosage Compensation, Genetic, Animals, Humans, Female, Caenorhabditis elegans
38 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).204 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
