Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PANGAEA
Dataset . 2010
Data sources: B2FIND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Biodiversity Information Facility
Dataset . 2010
License: CC BY
Data sources: Datacite
PANGAEA - Data Publisher for Earth and Environmental Science
Other dataset type . 2010
License: CC BY
Data sources: Datacite
versions View all 5 versions

(Table S2) Age determination of ODP Sites 202-1234 and 202-1235

Authors: Muratli, Jesse M; Chase, Zanna; Mix, Alan C; McManus, James;

(Table S2) Age determination of ODP Sites 202-1234 and 202-1235

Abstract

Antarctic Intermediate Water is, at present, a water mass that brings oxygen to intermediate depths throughout the Southern Hemisphere oceans. Models have suggested that intermediate waters had higher concentrations of oxygen during the last glacial period (Meissner et al., 2005, doi:10.1029/2004PA001083; Liu et al., 2002, doi:10.1029/2001GL013938), consistent with globally reduced denitrification (Galbraith et al., doi:10.1029/2003PA001000) and increased production of Antarctic Intermediate Water (Lynch-Stieglitz and Fairbanks, 1994, doi:10.1029/93PA02446). However, some palaeoceanographic reconstructions (Bostock et al., 2004, doi:10.1029/2004PA001047; Pahnke and Zahn, 2005, doi:10.1126/science.1102163) have indicated that production decreased in the southeast Pacific Ocean at this time. Here we analyse the concentrations of Re and Mn, the sedimentary concentrations of which are controlled by the amount of dissolved oxygen at the sea floor, from three sediment cores located along the Chilean margin for the past 30,000 years. Our results from the cores, which bracket the present-day water-column extent of Antarctic Intermediate Water, show that the depth range of well-oxygenated Antarctic Intermediate Water increased off Chile during the Last Glacial Maximum. Dissolved oxygen content began to decrease approximately 17,000 years ago, coincident with rapid Antarctic warming and a poleward shift of the southern westerly winds (Anderson et al., 2009, doi:10.1126/science.1167441). Our estimates of productivity from accumulation rates of organic carbon and opal do not co-vary with the seafloor oxygen variations, ruling out local control of seafloor oxygenation. We conclude that the data are best explained by a combination of increased oxygenation and increased flux of Antarctic Intermediate Water during the Last Glacial Maximum.

Supplement to: Muratli, Jesse M; Chase, Zanna; Mix, Alan C; McManus, James (2010): Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geoscience, 3, 23-26

Sediment depth is given in mcd.

Keywords

14C AMS, Age, dated, standard deviation, Calendar age, Leg202, DEPTH, sediment/rock, Ocean Drilling Program (ODP), Age, comment, comment, Laboratory, dated, dated standard deviation, Age, dated, Age, Sample code/label, Ammobaculites agglutinans, Event label, Joides Resolution, Sample code label, Reservoir effect/correction, Age, 14C milieu/reservoir corrected, sediment rock, Reservoir effect correction, DEPTH, Earth System Research, Ocean Drilling Program ODP, 14C milieu reservoir corrected, Age, 14C AMS, Composite Core

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average