Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Heart ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Heart Journal
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Genetic Variations of Mrf-2/Arid5b Confer Risk of Coronary Atherosclerosis in the Japanese Population

Authors: Guoqin, Wang; Masafumi, Watanabe; Yasushi, Imai; Kazuo, Hara; Ichiro, Manabe; Koji, Maemura; Momoko, Horikoshi; +7 Authors

Genetic Variations of Mrf-2/Arid5b Confer Risk of Coronary Atherosclerosis in the Japanese Population

Abstract

A phenotypic change of smooth muscle cells (SMCs) is considered to be critical in the pathogenesis of atherosclerotic lesions such as coronary artery disease (CAD). Mrf-2/ARID5B, a member of the AT-rich interaction domain family of transcription factors, is highly expressed in the cardiovascular system and is believed to play essential roles in the phenotypic change of SMCs through its regulation of SMC differentiation. In addition, recent studies on gene-engineered mice suggested that this transcriptional factor is involved in obesity and adipogenesis, which are critical aspects for the pathogenesis of atherosclerosis. Thus, we hypothesized that genetic variations of the Mrf-2 gene might be associated with susceptibility to CAD. We investigated 11 common genetic variations of Mrf-2 to determine whether they were associated with susceptibility to CAD in 475 CAD subjects and 310 control subjects. The prevalence of homozygotes for the minor allele G of SNP4 (rs2893880) and minor allele G of SNP6 (rs7087507) were significantly more frequent in the control subjects than in patients with CAD (P=0.0002, rs2893880, P=0.0058, rs7087507). Four nearby SNPs (SNP4 to SNP7) (rs2893880, rs10740055, rs7087507 and rs10761600) showed almost complete linkage disequilibrium, and haplotype analysis revealed that the haplotype G (rs2893880)-C (rs10740055)-G (rs7087507)-A (rs10761600) was also significantly negatively associated with susceptibility to CAD (P=0.049). Moreover, these negative disease associations still existed after logistic regression analysis was taken into account to eliminate confounding conventional coronary risk factors. The results implicate possible disease relevance of the polymorphisms in the Mrf-2 gene with susceptibility to CAD. However, a larger scale prospective study is needed to clarify these findings.

Keywords

Male, Homozygote, Myocytes, Smooth Muscle, Coronary Artery Disease, Middle Aged, Polymorphism, Single Nucleotide, DNA-Binding Proteins, Mice, Japan, Risk Factors, Case-Control Studies, Animals, Humans, Female, Genetic Predisposition to Disease, Aged, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
gold