Novel insights into the biological function of mast cell carboxypeptidase A
pmid: 19643669
Novel insights into the biological function of mast cell carboxypeptidase A
When mast cells are activated they can respond by releasing their secretory granule compounds, including mast cell-specific proteases of chymase, tryptase and carboxypeptidase A (MC-CPA) type. MC-CPA is a dominant protein component of the mast cell granule and the MC-CPA gene is extremely highly expressed. Despite this, relatively little has been known of its biological function. However, the recent generation of mouse strains lacking MC-CPA has opened up new possibilities for investigations related to this protease. This recent development has revealed a role for MC-CPA in regulating innate immunity responses, including the degradation of harmful substances such as the vasoconstrictive factor endothelin 1 and snake venom toxins. Here, we summarize the current knowledge of MC-CPA.
Mice, Carboxypeptidases A, Secretory Vesicles, Animals, Humans, Mast Cells, Immunity, Innate, Rats, Substrate Specificity
Mice, Carboxypeptidases A, Secretory Vesicles, Animals, Humans, Mast Cells, Immunity, Innate, Rats, Substrate Specificity
2 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).66 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
