Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Par-1 kinase establishes cell polarity and functions in Notch signaling in theDrosophilaembryo

Authors: Jennifer, Bayraktar; Deborah, Zygmunt; Richard W, Carthew;

Par-1 kinase establishes cell polarity and functions in Notch signaling in theDrosophilaembryo

Abstract

The Drosophila protein kinase Par-1 is expressed throughout Drosophila development, but its function has not been extensively characterized because of oocyte lethality of null mutants. In this report, we have characterized the function of Par-1 in embryonic and post-embryonic epithelia. Par-1 protein is dynamically localized during embryonic cell polarization, transiently restricted to the lateral membrane domain, followed by apicolateral localization. We depleted maternal and zygotic par-1 by RNAi and revealed a requirement for Par-1 in establishing cell polarity. Par-1 restricts the coalescing adherens junction to an apicolateral position and prevents its widespread formation along the lateral domain. Par-1 also promotes the localization of lateral membrane proteins such as Delta. These activities are important for the further development of cell polarity during gastrulation. By contrast, Par-1 is not essential to maintain epithelial polarity once it has been established. However, it still has a maintenance role since overexpression causes severe polarity disruption. Additionally, we find a novel role for Par-1 in Notch signal transduction during embryonic neurogenesis and retina determination. Epistasis analysis indicates that Par-1 functions upstream of Notch and is critical for proper localization of the Notch ligand Delta.

Related Organizations
Keywords

Embryo, Nonmammalian, Receptors, Notch, Cell Polarity, Protein Serine-Threonine Kinases, Ligands, Retina, Glycogen Synthase Kinase 3, Animals, Drosophila Proteins, Drosophila, Protein Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
hybrid